SVM

SVM(Support Vector Machine)

本博主要是采用周志华的《机器学习》部分,外加自己的理解。
1. 划分超平面方程如下
这里写图片描述
这个方程可以从向量的内积的意义来理解。
a⃗ b⃗ =|a⃗ ||b⃗ |cos<a⃗ ,b⃗ >
w⃗ Tx⃗  的结果是 x⃗  w⃗  方向上的投影乘以 |w⃗ | 。假设 x⃗  w⃗  都是从原点出发,处于超平面(二维空间的超平面是直线,三维空间上的超平面是平面)上的任意点 x 对应的 x⃗  w⃗  的点乘结果都是一样的,其值为 b
因此 w⃗  是这个超平面的法向量,而 b 则为这个超平面到原点的距离的平方。w⃗  b 决定了这个超平面的方向和位置。具体如下图展示:
这里写图片描述
2. 样本空间中的任意点x到超平面的距离
这里写图片描述
这个公式在书中一下子给出来,可能有点绕。
假设 Xp x 在超平面上的投影, x⃗ =Xp+rw⃗ ||w⃗ || ,有公式 f(x)=w⃗ Tx⃗ +b ,则 f(X⃗ p)=w⃗ TXp+b=0
f(x)=f(Xp+rw⃗ ||w⃗ ||)=w⃗ T(Xp+rw⃗ ||w⃗ ||)+b=r||w⃗ ||=w⃗ Tx⃗ +b
由此可以导出公式:
r=|w⃗ Tx⃗ +b|||w⃗ ||
示意图如下所示:
这里写图片描述
3. 进行分类
这里写图片描述
这里主要是想要解释一下6.4式怎么得来的。从6.3式的约束以及图6.2可以看出,与超平面平行且相隔距离为1的两条直线将训练集分为了两块。则根据6.2式可以得到两个异类支持向量到超平面的距离之和为 γ=2||w⃗ ||
4.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值