Objection Detection View

从2001到2020年的 IOD

目前,目标检测可以根据以下5种技术难题进行课题研究:
多尺度检测(Multi-scale Detection)
边界框回归(Bounding Box Regression)
上下文启动(Context Priming)
非极大抑制(Non-Maximum Suppression)
困难负样本挖掘(Hard Negative Mining)
在这里插入图片描述

一、多尺度检测

多尺度检测从历史时间顺序可以划分为以下5种:

  1. 2014年以前:基于特征金字塔和滑动窗口的检测
    在这里插入图片描述
    这种基于范式或者混合的检测方法适用于PASCAL VOC,不适用于更多样化的数据集,例如MS-COCO。对于检测不同长宽比的目标,没有一种统一的多尺度方法。
  2. 2010-2015年间:基于目标候选的检测
    在这里插入图片描述
    基于目标候选的检测方法提出了一组与类无关的候选框,而该候选框可能包含任何目标。该方法通过一种统一的多尺度方法来检测不同长宽比的对象,避免对整个图像进行滑动窗口搜索。
  3. 2013-2016年间:基于深度回归的检测
    在这里插入图片描述
    基于深度回归的检测方法提出了直接利用深度学习特征预测边界框坐标,这种方法简单粗暴,需要更高的GPU计算性能。但是定位精确度不够,特别是对于小目标检测。
  4. 2015年以后:基于多参考的检测
    在这里插入图片描述
    基于多参考的检测方法提出了在图像的不同位置预先定义一组不同大小、宽高比的候选框,再根据这些候选框预测检测框。这是目前最流行的多尺度目标检测方法。
  5. 2016年以后:基于多分辨率的检测
    在这里插入图片描述
    作为另一种比较流行的多尺度目标检测方法,多分辨率检测提出了在网络的不同层检测不同尺度的目标。
二、边界框回归

边界框回归的目的是在初始候选(框)的基础上细化预测边界框的位置。按照历史时间可以划分为以下3种:

  1. 2008年以前:没有边界框回归
    早期的检测方法通常直接使用滑动窗口(结合金字塔)作为目标检测结果,而不使用边界框回归。
  2. 2008年以后:从边界框到边界框
    DPM首先在目标检测中使用边界框回归,这时的边界框回归还是作为一个单独的后处理块,是可选的。此时的边界框回归还只是基于候选框预测每个目标对应的边界框。DPM采用最小二乘损失函数作为其回归损失。
  3. 2013年以后:从特征到边界框
    Faster RCNN在2015年被提出后,边界框不再作为单独的后处理块,而是与检测器集成,以端到端的方式进行训练。边界框回归已经演变为基于CNN特征预测边界框。通常采用smooth-L1函数或者平方根函数作为回归损失,它们对异常值的鲁棒性比使用最小二乘损失函数更强。
三、上下文启动

上下文启动一直被用来改进检测方法,其常用的3种方法如下:

  1. 局部上下文检测
    在这里插入图片描述
    局部上下文是指待检测的目标周边区域的视觉信息。例如利用包含面部轮廓提高人脸检测性能,通过加入少量的背景信息提高行人检测的准确性,通过扩大网络的接受域或者目标候选大小改进目标检测效果。
  2. 全局上下文检测
    在这里插入图片描述
    全局上下文是指待检测的整张图片对应的视觉信息。例如利用整个场景集成的组成元素对应的统计摘要作为目标检测的额外信息源,通过(》=)输入图像的接受域或者CNN特征的全局池化集成全局上下文,将全局上下文作为一种序列信息,并采用RNN学习该信息。
  3. 上下文交互
    在这里插入图片描述
    上下文交互是指通过视觉元素的约束或者依赖等交互关系来表达的信息。例如利用两个目标间的关系或者目标与场景间的依赖关系。
四、非极大抑制

非极大抑制主要是作为后处理步骤,去除重复的边界框。目前NMS主要有以下3种:

  1. 贪心选择
    在这里插入图片描述
    贪心选择是目前最流行且资历比较老的基于NMS的目标检测方法,其思想简单直观:对于一组重叠的待检测目标,检测分数最大的边界框是被选择,并根据预定义好的IOU阈值删除其对应的相邻框。根据贪心算法迭代执行以上步骤。不足之处:1. 得分最高的框可能并不是最适合的,2. 临近的目标可能被抑制,3. 不抑制假阳性。
  2. 边界框聚合
    在这里插入图片描述
    边界框聚合是将多个重叠的边界框组合或者聚类成一个最终的检测结果,优势在于充分考虑了目标间的关系和空间布局。
  3. 学习NMS
    在这里插入图片描述
    学习NMS是将NMS看作是一个过滤器,对所有原始检测结果进行重新评分,并采用端到端的方式将NMS训练成网络的一部分。适用于改善遮挡和密集目标检测。
五、困难负样本挖掘(HNM)

目标检测器本质上是一个不平衡的数据学习问题。按照历史时间顺序,HNM可以划分为以下3种:

  1. 2014年以前:Bootstrap
    Bootstrap 是指一组训练技术,训练从一小部分背景样本开始,然后在训练过程中迭代地添加新的误分类背景,目的是减少对数百万个背景样本的训练计算。
  2. 2014-2016年: 没有HNM
    随着计算机计算性能的不断提升,Bootstrap不再适用。例如RCNN和YOLO只在正负样本间平衡权重。
  3. 2016年以后:采用新的损失函数和Bootstrap
    16年后,bootstrap被重新使用在基于深度学习的检测器中,通过重塑标准交叉熵损失函数使其更集中于困难的误分类例子上。
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
【优质项目推荐】 1、项目代码均经过严格本地测试,运行OK,确保功能稳定后才上传平台。可放心下载并立即投入使用,若遇到任何使用问题,随时欢迎私信反馈与沟通,博主会第一时间回复。 2、项目适用于计算机相关专业(如计科、信息安全、数据科学、人工智能、通信、物联网、自动化、电子信息等)的在校学生、专业教师,或企业员工,小白入门等都适用。 3、该项目不仅具有很高的学习借鉴价值,对于初学者来说,也是入门进阶的绝佳选择;当然也可以直接用于 毕设、课设、期末大作业或项目初期立项演示等。 3、开放创新:如果您有一定基础,且热爱探索钻研,可以在此代码基础上二次开发,进行修改、扩展,创造出属于自己的独特应用。 欢迎下载使用优质资源!欢迎借鉴使用,并欢迎学习交流,共同探索编程的无穷魅力! 基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip 基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip 基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值