ACM: 简单数学推导+挑战平台的精度…

                                                                  Power of Cryptography

Description

Current work in cryptography involves (among other things) large prime numbers and computing powers of numbers among these primes. Work in this area has resulted in the practical use of results from number theory and other branches of mathematics once considered to be only of theoretical interest.
This problem involves the efficient computation of integer roots of numbers.
Given an integer n>=1 and an integer p>= 1 you have to write a program that determines the n th positive root of p. In this problem, given such integers n and p, p will always be of the form k to the nth. power, for an integer k (this integer is what your program must find).

Input

The input consists of a sequence of integer pairs n and p with each integer on a line by itself. For all such pairs 1<=n<= 200, 1<=p<10101 and there exists an integer k, 1<=k<=109 such that kn = p.

Output

For each integer pair n and p the value k should be printed, i.e., the number k such that k n =p.

Sample Input

2 16

3 27

7 4357186184021382204544

Sample Output

4

3

1234

 

题意: k^n = p . 现在给出n , p 求 k

 

解题思路:

                  1. 取对数运算: k^n = p  <==> ln(k^n) = ln p  <==> nlnk = lnp  <==> lnk = (lnp)/n

                     <==>  lnk = ln(p^1/n) <==> k = p^(1/n).

                  2. 题目的精度直接pow计算值. long double是12个字节.

 

代码:

#include <cstdio>
#include <iostream>
#include <cmath>
using namespace std;

int main()
{
//    freopen("input.txt","r",stdin);
    double n , p;
    while(scanf("%lf %lf",&n,&p) != EOF)
    {
        printf("%.0lf\n",pow(p,1.0/n));
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值