一般情况下,算法中基本操作重复执行的次数是问题规模 n 的某个函数 f(n) 算法的时间度量记作 T(n) = O(f(n)),他表示随着问题规模n增大,算法执行时间的增长率和 f(n) 的增长率相同,乘坐算法的渐进时间复杂度(Asymptotic Time Complexity),简称时间复杂度。
算法时间复杂度从小到大依次是: O(1) < O(logn) < O(n) < O(nlogn) < O(n2) < O(n3) < O(2n) < O(n!) <O(nn)
时间复杂度越高,算法消耗cpu就越高,执行速度就越慢。
分析时间复杂度代码举例如下:
int sum = 1, n = 100;
O(1):
sum = (1 + n) * n / 2;
O(logn):