算法的时间复杂度详解

本文详细解析了算法的时间复杂度,介绍了如何用O记法表示算法的渐进时间复杂度,并列举了不同复杂度级别的代码示例,如O(1)、O(logn)、O(n)、O(nlogn)和O(n2)。强调了时间复杂度与算法执行效率的关系,指出通常讨论的是最坏情况下的时间复杂度。
摘要由CSDN通过智能技术生成

    一般情况下,算法中基本操作重复执行的次数是问题规模 n 的某个函数 f(n) 算法的时间度量记作 T(n) = O(f(n)),他表示随着问题规模n增大,算法执行时间的增长率和 f(n) 的增长率相同,乘坐算法的渐进时间复杂度(Asymptotic Time Complexity),简称时间复杂度


    算法时间复杂度从小到大依次是: O(1) < O(logn) < O(n) < O(nlogn) < O(n2< O(n3) < O(2n) < O(n!) <O(nn

    时间复杂度越高,算法消耗cpu就越高,执行速度就越慢。


   分析时间复杂度代码举例如下:

int sum = 1, n = 100;

O(1):

sum = (1 + n) * n / 2;


O(logn):

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值