天平称小球问题

本文介绍了使用三进制编码法解决天平称小球问题,通过编码表示小球的称量状态,避免重复操作,并讨论了编码的选择与对偶码的关系,确保能唯一确定非标准小球。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

天平称小球问题

 天平称小球问题有很多经典的范式解法,在这里我们谈论着只是其中最为广泛应用的一种——三进制编码解法。

 为什么想起了使用三进制?其实很好理解。让我们考虑一下小球的状态,有:没放在天平上、在天平左盘、在天平右盘三种。我们不妨用一些数码来表示这三种状态:
 0——没放在天平上
 1——放在天平左盘
 2——放在天平右盘
 这样,我们就可以用一个数码串来表示某个小球被称量的过程,比如某个小球的编码是210120,就表明这个小球,第一次称量在右盘,第二次在左盘,第三次不在天平上,第四次在左盘,第五次在右盘,第六次不在天平上。很简单吧,仅仅用一个数码串就把小球复杂的称量过程表示出来了。

 为了方便说明,下面都以“12小球称3次”来描述这个问题,不过,你很容易就能够推广到“M个小球称N次的情形”。好,闲言少叙,书归正传。

 假设我们已经把12个小球编上不重复的3进制编码,称量的时候我们完全按照编码操作,第0步,我们把12个小球上的编码第0位为1的放在天平左边,编码第0位为2的放在天平的右边,编码第0位为0的则不放在天平上,记下称量结果;第1步,我们把12个小球上的编码第1位为1的放在天平左边,编码第1位为2的放在天平的右边,编码第0位为1的不放在天平上,记下称量结果;如此下去,编码有N位,我们就称量N次,得到N组结果。

 考察一下结果的状态:天平平衡、天平左边轻于右边、天平左边重于右边。咦?怎么也是3种。(hia hia,无巧不成书嘛,好戏还在后面)我们用0来表示天平平衡,

信息论中的小球问题通常是一个经典的算法谜题,也被为“最小量次数找出不同质量物品”的问题。这个问题通常涉及到n个大小未知的小球,你需要确定每个小球的质量,但是只有一台可以精确测量两个物品总重量的天平。 在Java中解决这个问题,你可以采用分治策略,特别是二分查找法,因为每次比较都可以将待确定的小球范围缩小一半。下面是基本思路: 1. 将所有球分为两组,分别放在天平两端。 2. 如果天平平衡,则较轻的那个球在未被选择的那一堆中,通过二分查找找到它。 3. 如果天平不平衡,那么较轻的那一侧放着较轻的球,继续将这一半的球分成两组,重复上述过程直到找到唯一的轻球。 4. 找到轻球后,再用同样的方法找出其具体的质量差异。 以下是简单的伪代码示例: ```java public int findHeaviest(int[] weights) { if (weights.length == 1) return 0; // 唯一一颗球直接返回其重量 Arrays.sort(weights); // 先排序,便于区分轻重 int half = weights.length / 2; // 使用二分查找确定轻球位置 int minDifference = Integer.MAX_VALUE; for (int i = 0; i <= half; i++) { int diff = Math.abs(weights[half] - weights[i]); if (diff < minDifference) { minDifference = diff; } } // 再次用天平找具体轻多少克 int[] left = new int[half], right = new int[half]; System.arraycopy(weights, 0, left, 0, half); System.arraycopy(weights, half, right, 0, half); int heavierIndex = binarySearch(left, right, minDifference + weights[half]); return heavierIndex * 2; } // 二分查找辅助函数 private int binarySearch(int[] arr, int target) { // ... 实现二分查找 ... } ```
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值