RGB排序,一个字符串,里面只有三种字符R G B,所有的R都在G的前面,所有的G都在B的前面。将给定字符串按照此规律排序。要求不允许用辅助空间,复杂度控制在O(N)。

(1)RGB排序,一个字符串,里面只有三种字符R G B,所有的R都在G的前面,所有的G都在B的前面。将给定字符串按照此规律排序。要求不允许用辅助空间,复杂度控制在O(N)。遍历一遍就排好序。

 

设原来的的字符串为:

RGBBGRRBRGRBBG

 

算法思路如下:

1)题目中要求不能增加辅助空间,所以交换两个字符的时候要做特殊处理哦!不增加任何空间交换2个元素的位置,这样的题目遇到的多了!

比如:char a=R,char b=G;

那么交换a,b的算法如下:

b=a+b;

a=b-a;

b=b-a;不过注意这里如果用字符型运行可能会溢出,转换成int型在运算吧,呵呵!不多讲了,大家都明白!

 

2)时间复杂度为o(n),所以只能遍历一遍就排好序;即不能回朔!

 

解法如下:

1)用两个int i,j分别指向字符串的开始和字符串的末尾

2)然后i往后移动,j往前移动,当i>j时,结束,排序完毕;

3)如果i的位置为R,则i++,如果j的位置为B,则j--;

4)如果i为B或者j为R,则交换i和j对应位置的元素;

5)如果i的位置为G,且j的位置为G,则考虑i+1的位置和j-1的位置;

5.1)如果i+1的位置为R,则交换i和i+1的位置的元素,然后i++;

5.2)如果j-1的位置为B,则交换j和j-1的元素,然后j--;

5.3)如果i+1的位置为B,则交换j和i+1的位置上的元素;然后j--;

5.4)如果j-1的位置的元素为R,则交换j-1和i位置上的元素,然后i++;

5.5)如果i+1和j+1上的元素还是为G,则比较i+2,和j-2;依次类推:

如:

RGBBGRRBRGRBBG

举例如下:

第一次:i指向R,j指向G,因为i的位置上的元素为R,所以i++;j的元素为G,则判断j-1的位置的元素,因为为B,则交换j和j-1,然后j--

第一次交换后的元素如下:

RGBBGRRBRGRBGB

 

其中i=1;j=12

 

然后第2次比较:

i=1的位置和j=12的位置上的元素都为G,那么就按照上面的第5条处理;

比较i+1的元素,i=2的元素为B,那么就交换i+1=2和j上的元素;满足5.3;

交换后的元素排列顺序如下:

RGGBGRRBRGRBBB

 

其中i=1,j=11;

 

第3次比较:

j的位置上的元素为B,则j--;j=10;然后j=10上的位置元素为R,交换i和j上的元素

交换后的元素排列如下:

RRGBGRRBRGGBBB

然后i++

 

此时i=2,j=10;

 

第4次比较:

此时i和j位置上的元素都为G了,又要参考第5条处理;

i+1上的元素为B,则交换i+1和j位置上的元素,然后j--;

 

交换后的排列如下:

RRGGGRRBRGBBBB

 

此时i=2,j=9;

 

第5次交换:i和j的位置的元素都是G,还是按第5条处理;

i+1位置上的元素也是G,那么就看j-1上的位置,此时j-1上的位置为R,那么交换j-1和i的元素,然后i++;

 

交换后的元素如下:

RRRGGRRBGGBBBB

此时i=3;j=9;

 

第6次交换:

此时i和j上的位置都是G,且i+1和j-1上的位置元素也是G,那么我们就要依次类推了,推到i+2

i+2上的元素为R,那么交换i和i+2位置上的元素的值;交换后i++

 

交换后排列如下:

RRRRGGRBGGBBBB

此时:

i=4,j=9;

 

此时i和j位置上的元素还都是G,且i+1和j-1位置上的元素也是G,推到i+2;

i+2上的元素为R,那么交换i和i+2位置上的元素的值;交换后i++

 

交换后:

RRRRRGGBGGBBBB

此时i=5,j=9;

此时i和j的元素都是G,那么且i+1和j-1位置上的元素也是G,推到i+2;

i+2上的元素为B,那么交换i+2和j的值,交换后,j--;

 

交换后的排列如下:

RRRRRGGGGBBBBB

 

此时i=5;j=8;

 

此时i和j上的位置上的元素都为G,依次类推:i+1=6,j-1=7上的位置,都是G,然后在推i+2,和j-2的位置上的元素,还是G,且i+2=7,j-2=6;(i+2)>(j

-2),排序结束!

 

 

 

下面是我算法的源码,绝对满足要求,如果你还有更好的方法,欢迎和我交流!

#include "stdafx.h"
#include "stdlib.h"
#include <string>

#include <vector>
#include <list>
#include <algorithm>

using namespace std;

//算法中谈到了怎样不增加任何空间,交换两个元素的位置,在前面中介绍的是char型的加减法实现的,在做加减法实现的过程中要防止溢出,所以我这里换了个方法,使用异或实现!
void swap(std::string &StrSrc,int i,int j) 

 StrSrc[i]=StrSrc[i]^StrSrc[j];
 StrSrc[j]=StrSrc[j]^StrSrc[i];
 StrSrc[i]=StrSrc[i]^StrSrc[j];
 
 return;

 //返回flase表示排序已经完成
bool StringSortGG(std::string &StrSrc,int &i,int &j)
{
 
 int ibegin,iend;

 ibegin=i+1;
 iend=j-1;

 if (ibegin>iend)
 {
  return false;  //
 }

 while (ibegin<=iend)
 {
  //
  if (StrSrc[ibegin]=='R')
  {
   swap(StrSrc,i,ibegin);
   i++;
   break;
  }else if (StrSrc[iend]=='B')
  {
   swap(StrSrc,j,iend);
   j--;
   break;
  }else if (StrSrc[ibegin]=='B')
  {
   swap(StrSrc,ibegin,j);
   j--;
   break;
  }else if (StrSrc[iend]=='R')
  {
   swap(StrSrc,i,iend);
   i++;
  }else{
   ibegin++;
   iend--;
   
   if (ibegin>iend)
   {
    return false;
   }
  }
 }

 return true;
}

bool StringSort(std::string &StrSrc)
{

 // std::string StrSrc="RGBBGRRBRGRBBG";

 if (StrSrc.empty())
 {
  return false;
 }

 int i=0;

 int j=StrSrc.length()-1;

 while (i<j)
 {
  
  if (StrSrc[i]=='R')
  {
   i++;
  }else if (StrSrc[j]=='B')
  {
   j--;
  }else if (StrSrc[i]=='B')
  {
   swap(StrSrc,i,j);
   j--;
  }else if(StrSrc[j]=='R')
  {
   swap(StrSrc,i,j);
   i++;
  }else if ((StrSrc[i]=='G')&&(StrSrc[j]=='G'))
  {
   //
   bool bRet=StringSortGG(StrSrc,i,j);

   if (!bRet)
   {
    return true;
   }
   
  }

 }
 
 return true;

}

int main(void)
{
    std::string StrSrc="RGBBGRRBRGRBBG";
    StringSort(StrSrc);
}

 

算法完毕!

 

 

 

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值