(1)RGB排序,一个字符串,里面只有三种字符R G B,所有的R都在G的前面,所有的G都在B的前面。将给定字符串按照此规律排序。要求不允许用辅助空间,复杂度控制在O(N)。遍历一遍就排好序。
设原来的的字符串为:
RGBBGRRBRGRBBG
算法思路如下:
1)题目中要求不能增加辅助空间,所以交换两个字符的时候要做特殊处理哦!不增加任何空间交换2个元素的位置,这样的题目遇到的多了!
比如:char a=R,char b=G;
那么交换a,b的算法如下:
b=a+b;
a=b-a;
b=b-a;不过注意这里如果用字符型运行可能会溢出,转换成int型在运算吧,呵呵!不多讲了,大家都明白!
2)时间复杂度为o(n),所以只能遍历一遍就排好序;即不能回朔!
解法如下:
1)用两个int i,j分别指向字符串的开始和字符串的末尾
2)然后i往后移动,j往前移动,当i>j时,结束,排序完毕;
3)如果i的位置为R,则i++,如果j的位置为B,则j--;
4)如果i为B或者j为R,则交换i和j对应位置的元素;
5)如果i的位置为G,且j的位置为G,则考虑i+1的位置和j-1的位置;
5.1)如果i+1的位置为R,则交换i和i+1的位置的元素,然后i++;
5.2)如果j-1的位置为B,则交换j和j-1的元素,然后j--;
5.3)如果i+1的位置为B,则交换j和i+1的位置上的元素;然后j--;
5.4)如果j-1的位置的元素为R,则交换j-1和i位置上的元素,然后i++;
5.5)如果i+1和j+1上的元素还是为G,则比较i+2,和j-2;依次类推:
如:
RGBBGRRBRGRBBG
举例如下:
第一次:i指向R,j指向G,因为i的位置上的元素为R,所以i++;j的元素为G,则判断j-1的位置的元素,因为为B,则交换j和j-1,然后j--
第一次交换后的元素如下:
RGBBGRRBRGRBGB
其中i=1;j=12
然后第2次比较:
i=1的位置和j=12的位置上的元素都为G,那么就按照上面的第5条处理;
比较i+1的元素,i=2的元素为B,那么就交换i+1=2和j上的元素;满足5.3;
交换后的元素排列顺序如下:
RGGBGRRBRGRBBB
其中i=1,j=11;
第3次比较:
j的位置上的元素为B,则j--;j=10;然后j=10上的位置元素为R,交换i和j上的元素
交换后的元素排列如下:
RRGBGRRBRGGBBB
然后i++
此时i=2,j=10;
第4次比较:
此时i和j位置上的元素都为G了,又要参考第5条处理;
i+1上的元素为B,则交换i+1和j位置上的元素,然后j--;
交换后的排列如下:
RRGGGRRBRGBBBB
此时i=2,j=9;
第5次交换:i和j的位置的元素都是G,还是按第5条处理;
i+1位置上的元素也是G,那么就看j-1上的位置,此时j-1上的位置为R,那么交换j-1和i的元素,然后i++;
交换后的元素如下:
RRRGGRRBGGBBBB
此时i=3;j=9;
第6次交换:
此时i和j上的位置都是G,且i+1和j-1上的位置元素也是G,那么我们就要依次类推了,推到i+2
i+2上的元素为R,那么交换i和i+2位置上的元素的值;交换后i++
交换后排列如下:
RRRRGGRBGGBBBB
此时:
i=4,j=9;
此时i和j位置上的元素还都是G,且i+1和j-1位置上的元素也是G,推到i+2;
i+2上的元素为R,那么交换i和i+2位置上的元素的值;交换后i++
交换后:
RRRRRGGBGGBBBB
此时i=5,j=9;
此时i和j的元素都是G,那么且i+1和j-1位置上的元素也是G,推到i+2;
i+2上的元素为B,那么交换i+2和j的值,交换后,j--;
交换后的排列如下:
RRRRRGGGGBBBBB
此时i=5;j=8;
此时i和j上的位置上的元素都为G,依次类推:i+1=6,j-1=7上的位置,都是G,然后在推i+2,和j-2的位置上的元素,还是G,且i+2=7,j-2=6;(i+2)>(j
-2),排序结束!
下面是我算法的源码,绝对满足要求,如果你还有更好的方法,欢迎和我交流!
#include "stdafx.h"
#include "stdlib.h"
#include <string>
#include <vector>
#include <list>
#include <algorithm>
using namespace std;
//算法中谈到了怎样不增加任何空间,交换两个元素的位置,在前面中介绍的是char型的加减法实现的,在做加减法实现的过程中要防止溢出,所以我这里换了个方法,使用异或实现!
void swap(std::string &StrSrc,int i,int j)
{
StrSrc[i]=StrSrc[i]^StrSrc[j];
StrSrc[j]=StrSrc[j]^StrSrc[i];
StrSrc[i]=StrSrc[i]^StrSrc[j];
return;
}
//返回flase表示排序已经完成
bool StringSortGG(std::string &StrSrc,int &i,int &j)
{
int ibegin,iend;
ibegin=i+1;
iend=j-1;
if (ibegin>iend)
{
return false; //
}
while (ibegin<=iend)
{
//
if (StrSrc[ibegin]=='R')
{
swap(StrSrc,i,ibegin);
i++;
break;
}else if (StrSrc[iend]=='B')
{
swap(StrSrc,j,iend);
j--;
break;
}else if (StrSrc[ibegin]=='B')
{
swap(StrSrc,ibegin,j);
j--;
break;
}else if (StrSrc[iend]=='R')
{
swap(StrSrc,i,iend);
i++;
}else{
ibegin++;
iend--;
if (ibegin>iend)
{
return false;
}
}
}
return true;
}
bool StringSort(std::string &StrSrc)
{
// std::string StrSrc="RGBBGRRBRGRBBG";
if (StrSrc.empty())
{
return false;
}
int i=0;
int j=StrSrc.length()-1;
while (i<j)
{
if (StrSrc[i]=='R')
{
i++;
}else if (StrSrc[j]=='B')
{
j--;
}else if (StrSrc[i]=='B')
{
swap(StrSrc,i,j);
j--;
}else if(StrSrc[j]=='R')
{
swap(StrSrc,i,j);
i++;
}else if ((StrSrc[i]=='G')&&(StrSrc[j]=='G'))
{
//
bool bRet=StringSortGG(StrSrc,i,j);
if (!bRet)
{
return true;
}
}
}
return true;
}
int main(void)
{
std::string StrSrc="RGBBGRRBRGRBBG";
StringSort(StrSrc);
}
算法完毕!