《异常检测——从经典算法到深度学习》
- 0 概论
- 1 基于隔离森林的异常检测算法
- 2 基于LOF的异常检测算法
- 3 基于One-Class SVM的异常检测算法
- 4 基于高斯概率密度异常检测算法
- 5 Opprentice——异常检测经典算法最终篇
- 6 基于重构概率的 VAE 异常检测
- 7 基于条件VAE异常检测
- 8 Donut: 基于 VAE 的 Web 应用周期性 KPI 无监督异常检测
- 9 异常检测资料汇总(持续更新&抛砖引玉)
- 10 Bagel: 基于条件 VAE 的鲁棒无监督KPI异常检测
- 11 ADS: 针对大量出现的KPI流快速部署异常检测模型
- 12 Buzz: 对复杂 KPI 基于VAE对抗训练的非监督异常检测
- 13 MAD: 基于GANs的时间序列数据多元异常检测
- 14 对于流数据基于 RRCF 的异常检测
- 15 通过无监督和主动学习进行实用的白盒异常检测
- 16 基于VAE和LOF的无监督KPI异常检测算法
- 17 基于 VAE-LSTM 混合模型的时间异常检测
- 18 USAD:多元时间序列的无监督异常检测
- 19 OmniAnomaly:基于随机循环网络的多元时间序列鲁棒异常检测
- 20 HotSpot:多维特征 Additive KPI 的异常定位
- 21 Anomaly Transformer: 基于关联差异的时间序列异常检测
- 22 Kontrast: 通过自监督对比学习识别软件变更中的错误
- 23 TimesNet: 用于常规时间序列分析的时间二维变化模型
- 24 TSB-UAD:用于单变量时间序列异常检测的端到端基准套件
- 25 DIF:基于深度隔离林的异常检测算法
- 26 Time-LLM:基于大语言模型的时间序列预测
- 27 Dejavu: Actionable and Interpretable Fault Localization for Recurring Failures in Online Service Systems
- 28 UNRAVEL ANOMALIES:基于周期与趋势分解的时间序列异常检测端到端方法
相关:
9 异常检测资料汇总(持续更新&抛砖引玉)
考虑到异常检测任务的繁琐,这里特地列举一些可能大家用的到的论文和资料,如果有补充请务必在后面留言。
9.1 论文
论文是重中之重,请务必重视论文阅读。但是在这里很难也不可能列举出所有优秀的论文,所以这里只提供一些常用的查论文的方法等。
此系列论文都保存在 阿里云盘,以后的更新也都将同步到这个云盘中。
论文名称 | 年份 | 标签 | 下载地址 | 源码 | 个人笔记 |
---|---|---|---|---|---|
Isolation Forest | 2009 | Isolation Forest/集成学习 | 蓝奏云 | sklearn | CSDN1 |
LOF: Identifying Density-Based Local Outliers | 2000 | 基于分布密度差异/基于局部计算 | 蓝奏云 | sklearn | CSDN2 |
Opprentice: Towards Practical and Automatic Anomaly Detection Through Machine Learning | 2015 | 随机森林 / 集成学习 / KPI | netman | \ | CSDN5 |
Variational Autoencoder based Anomaly Detection using Reconstruction Probability | 2015 | VAE | 蓝奏云 | \ | CSDN6 |
Unsupervised Anomaly Detection via Variational Auto-Encoder for Seasonal KPIs in Web Applications | 2018 | VAE / KPI | netman | github | CSDN8 |
Robust and Unsupervised KPI Anomaly Detection Based on Conditional Variational Autoencoder | 2018 | cVAE / KPI | netman | github | CSDN10 |
Rapid Deployment of Anomaly Detection Models for Large Number of Emerging KPI Streams | 2018 | Framework/集群 | netman | \ | CSDN11 |
Unsupervised Anomaly Detection for Intricate KPIs via Adversarial Training of VAE | 2019 | VAE/GAN | netman | \ | CSDN12 |
Anomaly Detection with Generative AdversarialNetworks for Multivariate Time Series | 2018 | GAN/RNN/LSTM | arxiv | github | CSDN13 |
Robust Random Cut Forest Based Anomaly Detection On Streams | 2016 | 随机森林/RRCF | proceedings | github | CSDN14 |
Practical and White-Box Anomaly Detection through Unsupervised and Active Learning | 2020 | 随机森林/RRCF | netman | \ | CSDN15 |
Unsupervised Anomaly Detection with Variational Auto-Encoder and Local Outliers Factor for KPIs | 2021 | VAE / LOF | ISPA | \ | CSDN16 |
ANOMALY DETECTION FOR TIME SERIES USING VAE-LSTM HYBRID MODEL | 2020 | VAE-LSTM | ICASSP | \ | CSDN17 |
USAD : UnSupervised Anomaly Detection on Multivariate Time Series | 2020 | adversely AutoEncoder | research gate | \ | CSDN18 |
Robust Anomaly Detection for Multivariate Time Series through Stochastic Recurrent Neural Network | 2019 | RNN | KDD 19 | github | CSDN19 |
HotSpot: Anomaly Localization for Additive KPIs with Multi-Dimensional Attributes | 2018 | 蒙特卡罗搜索树 | IEEE Access netman | \ | CSDN20 |
ANOMALY TRANSFORMER: TIME SERIES ANOMALY DETECTION WITH ASSOCIATION DISCREPANCY | 2022 | Transformer | ICLR arxiv | github | CSDN21 |
Identifying Erroneous Software Changes through Self-Supervised Contrastive Learning on Time Series Data | 2022 | LSTM | ISSRE netman | github | CSDN22 |
TIMESNET: TEMPORAL 2D-VARIATION MODELING FOR GENERAL TIME SERIES ANALYSIS | 2023 | / | ICLR2023 | github | CSDN23 |
TSB-UAD: an end-to-end benchmark suite for univariate time-series anomaly detection | 2023 | / | VLDB | github | CSDN24 |
Deep Isolation Forest for Anomaly Detection | 2023 | Deep IF | TKDE arxiv | github | CSDN25 |
Time-LLM: Time Series Forecasting by Reprogramming Large Language Models | 2024 | LLM | arxiv | github | CSDN26 |
Actionable and Interpretable Fault Localization for Recurring Failures in Online Service Systems | 2022 | FDG, GAT | netman | CSDN27 |
9.2 数据集
这个是特别需要关注的地方,因为没有数据集就没法做实验,没有数据集是一个非常严重的问题。到目前为止能够直接使用的数据集也很少。
其他数据集:
iTrust 数据集(以下内容均来自iTrust官方回复的邮件,一般最新的也会存储与此云盘):
SWaT
ITEM | 链接 |
---|---|
SWaT.A1 & A2_Dec 2015 | https://drive.google.com/drive/folders/1xTNQDqEFtFfDuhl75P23ZNIeGgCntRt7?usp=sharing |
SWaT.A3_Jun 2017 | https://drive.google.com/drive/folders/1hcowKm_VtU_Q5HY-jRsiaoKl8IGYGQQj?usp=sharing |
SWaT.A4 & A5_Jul 2019 | https://drive.google.com/drive/folders/1OD2DSt4T-3WysolSLCda7hNYnoc62Mtq?usp=sharing |
SWaT.A6_Dec 2019 | https://drive.google.com/drive/folders/188nwa2EYofof4X2KgDNEav2WtmEN4YBn?usp=sharing |
SWaT.A7_Jun 2020 | https://drive.google.com/drive/folders/1LRU4R8Szec3jO31YX2cI5qO-ToZ3WUkv?usp=sharing |
ALL | https://drive.google.com/drive/folders/1ABZKdclka3e2NXBSxS9z2YF59p7g2Y5I?usp=sharing |
WADI
ITEM | 链接 |
---|---|
WADI.A1_9 Oct 2017 | https://drive.google.com/drive/folders/1-4WJfyLTIC1QBdUXMecols_bRCuCqwYW?usp=sharing |
WADI.A2_19 Nov 2019 | https://drive.google.com/drive/folders/12mqpuejSSjq2Wa_0muVjcoQuLN0H6vZt?usp=sharing |
All | https://drive.google.com/drive/folders/11XWMQruwxFvlVEiqNgZ1mxVw-c-5xSmR?usp=sharing |
EPIC
https://drive.google.com/drive/folders/1WdWIOSM2E2bLPl9wAUFLlaZUWSa3M3RF?usp=sharing
CISS
ITEM | 链接 |
---|---|
S317 | https://drive.google.com/drive/folders/1prgaDr7TC0v0ln5M-0RFUjhOMnMsQ8dm?usp=sharing |
CISS 2019 | https://drive.google.com/drive/folders/11jmDoCTFTX9oy2BthxQXOrzQg8DsZNpM?usp=sharing |
All | https://drive.google.com/drive/folders/1k8RE8XXwxaFZXwQ7qmvnHLJZL2kaLISy?usp=sharing |
Blaq_0
https://drive.google.com/drive/folders/1fkgwxT9zwxlbpZ-mpLuPYRv7DcQ2ljek?usp=sharing
BATADAL
https://drive.google.com/drive/folders/12-nEv4WaPlgj6SYb-vc7tBFrwxNSWjaV?usp=sharing
9.3 学习资源
华为云学院提供了微认证,推荐新手了解一下。
- NAIE日志异常检测服务应用 https://edu.huaweicloud.com/certifications/78d55ca9c9fa4b40b73f7979ffab9a43
- NAIE KPI异常检测模型服务应用 https://edu.huaweicloud.com/certifications/3310e5169bf54940bf644d0201ab7013
9.4 其他资源
一些源代码可以在github上找到。
- https://github.com/yzhao062/anomaly-detection-resources
- https://github.com/heyanyidui/MAD-GANs
- https://github.com/NetManAIOps/OmniAnomaly
- https://github.com/NetManAIOps/donut
- https://github.com/iopsai/iops
在线文章 / 博客
此处声明,电子书籍均来源网络,此处分享均以学习为目的,未收取任何费用,如有侵权请告知,立即取消分享:
- 《Time Series Analysis and Its Applications_ With R Examples, 4th Edition》
- 《Outlier Analysis Second Edition》
9.5 资源征集
由于自己能力有限,收集到的资料也相当有限,抱歉!将会持续更新!
如果有任何觉得相关或者可以用来做异常检测算法实验的数据集,都可以留言分享一下。在这里代表需要的小伙伴们 感谢分享!
编写不易,拒绝白piao。。。
感谢 您的 阅读、点赞、收藏 和 评论 ,别忘了 还可以 关注 一下哈,感谢 您的支持!
Smileyan
2021.3.7 21:57
最后更新 2023.03.03 21:53