题解
自然地会想到模拟开关的方法,开一个数组记录开关情况,最后奇数者亮。
例如
int bulbSwitch(int n) {
vector<int> cot(n+1,1);
int res=0;
if(n==1) return 1;
for(int pos=1;pos<=n;pos++){
for(int k=2;k<=n;k++)
if(pos%k==0) cot[pos]++;
if(cot[pos]%2 == 1) res++;
}
return res;
}
正确,但是这个O(n^2)方法超时。
怎么改进,注意到这一点每个位置 i 被开关的次数上面的算法是
for(k=2:n)
if(i%k == 0)
cot[i]++;
我们恰好在求的是数i的公因数的数量,i有奇数公因数等价于最后数为奇。
而一般而言任何数都有偶数个公因数,只有一种数有奇数个公因数,即平方数
如 1,2,9,16。。。
所以这道题等价为求1-n内有多少平方数
for(int i=1;i*i<=n;i++)
res++;
但这还不是最简,可证得 1-n内平方数数量恰等于 sqrt(n)。。
所以最后答案就一句话。
int bulbSwitch(int n) {
return sqrt(n);
}