LeetCode 319. Bulb Switcher

16 篇文章 0 订阅
9 篇文章 0 订阅

题解

自然地会想到模拟开关的方法,开一个数组记录开关情况,最后奇数者亮。
例如

int bulbSwitch(int n) {
        vector<int> cot(n+1,1);
        int res=0;
        if(n==1) return 1;
        for(int pos=1;pos<=n;pos++){
            for(int k=2;k<=n;k++)
                if(pos%k==0) cot[pos]++;
            if(cot[pos]%2 == 1) res++;
        }
        return res;
    }

正确,但是这个O(n^2)方法超时。
怎么改进,注意到这一点每个位置 i 被开关的次数上面的算法是

for(k=2:n)  
	if(i%k == 0)
		cot[i]++; 

我们恰好在求的是数i的公因数的数量,i有奇数公因数等价于最后数为奇。
而一般而言任何数都有偶数个公因数,只有一种数有奇数个公因数,即平方数
如 1,2,9,16。。。
所以这道题等价为求1-n内有多少平方数

for(int i=1;i*i<=n;i++)
	res++;

但这还不是最简,可证得 1-n内平方数数量恰等于 sqrt(n)。。
所以最后答案就一句话。

int bulbSwitch(int n) {
    return sqrt(n);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值