leetcode319. 灯泡开关 数论

  • https://leetcode.cn/problems/bulb-switcher/

  • 初始时有 n 个灯泡处于关闭状态。第一轮,你将会打开所有灯泡。接下来的第二轮,你将会每两个灯泡关闭第二个。

  • 第三轮,你每三个灯泡就切换第三个灯泡的开关(即,打开变关闭,关闭变打开)。第 i 轮,你每 i 个灯泡就切换第 i 个灯泡的开关。直到第 n 轮,你只需要切换最后一个灯泡的开关。

  • 找出并返回 n 轮后有多少个亮着的灯泡。

示例 1:
 输入:n = 3
输出:1 
解释:
初始时, 灯泡状态 [关闭, 关闭, 关闭].
第一轮后, 灯泡状态 [开启, 开启, 开启].
第二轮后, 灯泡状态 [开启, 关闭, 开启].
第三轮后, 灯泡状态 [开启, 关闭, 关闭]. 

你应该返回 1,因为只有一个灯泡还亮着。
示例 2:

输入:n = 0
输出:0
示例 3:

输入:n = 1
输出:1

code

  • 当整除时转换,灯泡x转换次数是小于n的因子的个数。所以问题转换为:在[1,n] 内有多少个数,其因数的个数为奇数。这些因数个数为奇数的灯泡就是最后亮着的灯泡。
  • 同时因数是“对称”出现的:我们知道如果某个数 k 为 x 的约数,那么 k x \frac{k}{x} xk为 x 的约数
  • x 为完全平方数时因子有奇数个,问题转换为[1,n] 内有多少个完全平方数
  • 从1到| n \sqrt n n 为[1,n] 能容纳的完全平方数,所以代码如下:
class Solution {
public:
    int bulbSwitch(int n) {
        return sqrt(n);
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值