-
初始时有 n 个灯泡处于关闭状态。第一轮,你将会打开所有灯泡。接下来的第二轮,你将会每两个灯泡关闭第二个。
-
第三轮,你每三个灯泡就切换第三个灯泡的开关(即,打开变关闭,关闭变打开)。第 i 轮,你每 i 个灯泡就切换第 i 个灯泡的开关。直到第 n 轮,你只需要切换最后一个灯泡的开关。
-
找出并返回 n 轮后有多少个亮着的灯泡。
示例 1:
输入:n = 3
输出:1
解释:
初始时, 灯泡状态 [关闭, 关闭, 关闭].
第一轮后, 灯泡状态 [开启, 开启, 开启].
第二轮后, 灯泡状态 [开启, 关闭, 开启].
第三轮后, 灯泡状态 [开启, 关闭, 关闭].
你应该返回 1,因为只有一个灯泡还亮着。
示例 2:
输入:n = 0
输出:0
示例 3:
输入:n = 1
输出:1
code
- 当整除时转换,灯泡x转换次数是小于n的因子的个数。所以问题转换为:在[1,n] 内有多少个数,其因数的个数为奇数。这些因数个数为奇数的灯泡就是最后亮着的灯泡。
- 同时因数是“对称”出现的:我们知道如果某个数 k 为 x 的约数,那么 k x \frac{k}{x} xk为 x 的约数
- x 为完全平方数时因子有奇数个,问题转换为[1,n] 内有多少个完全平方数
- 从1到| n \sqrt n n为[1,n] 能容纳的完全平方数,所以代码如下:
class Solution {
public:
int bulbSwitch(int n) {
return sqrt(n);
}
};