这道题目关键的就是字典序(题目要求字母要尽量小其次数字要尽量小,所以就是按照左上、右上、左下、右下的顺序)这就需要dir数组要有一个固定的顺序,还有就是输入时是先输入列再输入行
Description
Background
The knight is getting bored of seeing the same black and white squares again and again and has decided to make a journey
around the world. Whenever a knight moves, it is two squares in one direction and one square perpendicular to this. The world of a knight is the chessboard he is living on. Our knight lives on a chessboard that has a smaller area than a regular 8 * 8 board, but it is still rectangular. Can you help this adventurous knight to make travel plans?
Problem
Find a path such that the knight visits every square once. The knight can start and end on any square of the board.
The knight is getting bored of seeing the same black and white squares again and again and has decided to make a journey
around the world. Whenever a knight moves, it is two squares in one direction and one square perpendicular to this. The world of a knight is the chessboard he is living on. Our knight lives on a chessboard that has a smaller area than a regular 8 * 8 board, but it is still rectangular. Can you help this adventurous knight to make travel plans?
Problem
Find a path such that the knight visits every square once. The knight can start and end on any square of the board.
Input
The input begins with a positive integer n in the first line. The following lines contain n test cases. Each test case consists of a single line with two positive integers p and q, such that 1 <= p * q <= 26. This represents a p * q chessboard, where p describes how many different square numbers 1, . . . , p exist, q describes how many different square letters exist. These are the first q letters of the Latin alphabet: A, . . .
Output
The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the lexicographically first path that visits all squares of the chessboard with knight moves followed by an empty line. The path should be given on a single line by concatenating the names of the visited squares. Each square name consists of a capital letter followed by a number.
If no such path exist, you should output impossible on a single line.
If no such path exist, you should output impossible on a single line.
Sample Input
3 1 1 2 3 4 3
Sample Output
Scenario #1: A1 Scenario #2: impossible Scenario #3: A1B3C1A2B4C2A3B1C3A4B2C4
#include <stdio.h>
#include <string.h>
int go[8][2]= {{-1,-2},{1,-2},{-2,-1},{2,-1},{-2,1},{2,1},{-1,2},{1,2}};
int vis[30][30];
int n,m,flag;
struct node
{
int x,y;
} a[30];
void dfs(int x,int y,int step)
{
a[step].x=x,a[step].y=y;
if(step==n*m)
{
for(int i=1; i<=step; i++)
printf("%c%d",a[i].y-1+'A',a[i].x);
printf("\n");
flag=1;
}
if(flag)return;
for(int i=0; i<8; i++)
{
int xx=x+go[i][0];
int yy=y+go[i][1];
if(xx>0&&xx<=n&&yy>0&&yy<=m&&vis[xx][yy]==0)
{
vis[xx][yy]=1;
dfs(xx,yy,step+1);
vis[xx][yy]=0;
}
}
}
int main()
{
int t,ci=1;
scanf("%d",&t);
while(t--)
{
memset(vis,0,sizeof(vis));
flag=0;
scanf("%d%d",&n,&m);
printf("Scenario #%d:\n",ci++);
vis[1][1]=1;
dfs(1,1,1);
if(flag==0)
printf("impossible\n");
printf("\n");
}
return 0;
}