Edmonds Karp 算法

algorithm EdmondsKarp
    input:
        C[1..n, 1..n] (Capacity matrix)
        E[1..n, 1..?] (Neighbour lists)
        s             (Source)
        t             (Sink)
    output:
        f             (Value of maximum flow)
        F             (A matrix giving a legal flow with the maximum value)
    f := 0 (Initial flow is zero)
    F := array(1..n, 1..n) (Residual capacity from u to v is C[u,v] - F[u,v])
    forever
        m, P := BreadthFirstSearch(C, E, s, t, F)
        if m = 0
            break
        f := f + m
        (Backtrack search, and write flow)
        v := t
        while v ≠ s
            u := P[v]
            F[u,v] := F[u,v] + m
            F[v,u] := F[v,u] - m
            v := u
    return (f, F)

algorithm BreadthFirstSearch
    input:
        C, E, s, t, F
    output:
        M[t]          (Capacity of path found)
        P             (Parent table)
    P := array(1..n)
    for u in 1..n
        P[u] := -1
    P[s] := -2 (make sure source is not rediscovered) 
    M := array(1..n) (Capacity of found path to node)
    M[s] := ∞
    Q := queue()
    Q.push(s)
    while Q.size() > 0
        u := Q.pop()
        for v in E[u]
            (If there is available capacity, and v is not seen before in search)
            if C[u,v] - F[u,v] > 0 and P[v] = -1
                P[v] := u
                M[v] := min(M[u], C[u,v] - F[u,v])
                if v ≠ t
                    Q.push(v)
                else
                    return M[t], P
    return 0, P

Example[edit]

Given a network of seven nodes, source A, sink G, and capacities as shown below:

Edmonds-Karp flow example 0.svg

In the pairs f/c written on the edges, f is the current flow, and c is the capacity. The residual capacity from u to v is c_f(u,v)=c(u,v)-f(u,v), the total capacity, minus the flow that is already used. If the net flow from u to v is negative, it contributesto the residual capacity.

Capacity Path
Resulting network
\min(c_f(A,D),c_f(D,E),c_f(E,G)) =

\min(3-0,2-0,1-0) =
\min(3,2,1) = 1

A,D,E,G
Edmonds-Karp flow example 1.svg
\min(c_f(A,D),c_f(D,F),c_f(F,G)) =

\min(3-1,6-0,9-0) =
\min(2,6,9) = 2

A,D,F,G
Edmonds-Karp flow example 2.svg
\min(c_f(A,B),c_f(B,C),c_f(C,D),c_f(D,F),c_f(F,G)) =

\min(3-0,4-0,1-0,6-2,9-2) =
\min(3,4,1,4,7) = 1

A,B,C,D,F,G
Edmonds-Karp flow example 3.svg
\min(c_f(A,B),c_f(B,C),c_f(C,E),c_f(E,D),c_f(D,F),c_f(F,G)) =

\min(3-1,4-1,2-0,0-(-1),6-3,9-3) =
\min(2,3,2,1,3,6) = 1

A,B,C,E,D,F,G
Edmonds-Karp flow example 4.svg

Notice how the length of the augmenting path found by the algorithm (in red) never decreases. The paths found are the shortest possible. The flow found is equal to the capacity across the minimum cut in the graph separating the source and the sink. There is only one minimal cut in this graph, partitioning the nodes into the sets \{A,B,C,E\} and \{D,F,G\}, with the capacity

c(A,D)+c(C,D)+c(E,G)=3+1+1=5.\
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值