图论: 匈牙利算法 Edmonds

                                                                匈牙利算法

  输入格式:   

                      第1行3个整数,V1,V2的节点数目n1,n2,G的边数m

                      第2-m+1行,每行两个整数t1,t2,代表V1中编号为t1的点和V2中编号为t2的点之间有边相连

      输出格式:    result , 代表最大匹配数.

问题介绍:

              设G=(V,E)是一个无向图. 如顶点集V可分割为两个互不相交的子集V1,V2之并 , 并且图中每条边依附的两个顶点都分属于这两个不同的子集. 则称图G为二分图. 二分图也可记为G=(V1,V2,E).

           给定一个二分图G , 在G的一个子图M中 , M的边集{E}中的任意两条边都不依附于同一个顶点 , 则称M是一个匹配.

             选择这样的子集中边数最大的子集称为图的最大匹配问题(maximal matching problem)

        如果一个匹配中 , 图中的每个顶点都和图中某条边相关联 , 则称此匹配为完全匹配 , 也称作完备匹配.

 

例子代码:

#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
#define MAX 1005

int n, m, k;
int graph[MAX][MAX];
int y[MAX];
bool vis[MAX];

void read_graph()
{
    memset(graph,0,sizeof(graph));
    int u, v, num;
    for(int i = 0; i < k; ++i)
    {
        scanf("%d %d %d",&num,&u,&v);
        graph[u][v] = 1;
    }
}

int find(int u)
{
    for(int v = 1; v <= m; ++v)
    {
        if(graph[u][v] == 1 && !vis[v])
        {
            vis[v] = true;
            if(y[v] == -1 || find(y[v]))
            {
                y[v] = u;
                return true;
            }
        }
    }
    return false;
}

int Edmonds()
{
    memset(y,-1,sizeof(y));
    int result = 0;
    for(int u = 1; u <= n; ++u)
    {
        memset(vis,false,sizeof(vis));
        if(find(u))
            result++;
    }
    return result;
}

int main()
{
//    freopen("input.txt","r",stdin);
    while(scanf("%d %d %d",&n,&m,&k) != EOF && n != 0)
    {
        read_graph();
        printf("%d\n",Edmonds());
    }
    return 0;
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值