spark mllib源码分析之随机森林(Random Forest)(一)

本文将分为五部分深入分析 Spark MLlib 中随机森林 (Random Forest) 的源码,涵盖决策树和随机森林的基本概念,以及 Spark 为优化 RF 训练策略所采用的方法,包括逐层训练、样本抽样和特征装箱。此外,还详细解析了训练数据的解析、参数设置及其封装。
摘要由CSDN通过智能技术生成

spark源码分析之随机森林(Random Forest)(二)
spark源码分析之随机森林(Random Forest)(三)
spark源码分析之随机森林(Random Forest)(四)
spark源码分析之随机森林(Random Forest)(五)

Spark在mllib中实现了tree相关的算法,决策树DT(DecisionTree),随机森林RF(RandomForest),GBDT(Gradient Boosting Decision Tree),其基础都是RF,DT是RF一棵树时的情况,而GBDT则是循环构建DT,GBDT与DT的代码是非常简单明了的,本文将分成五部分分别对RF的源码进行分析,介绍spark在实现过程中使用的一些技巧。

1. 决策树与随机森林

首先对决策树和随机森林进行简单的回顾。

1.1. 决策树

这里写图片描述

在决策树的训练中,如上图所示,就是从根节点开始,不断的分裂,直到触发截止条件,在节点的分裂过程中要解决的问题其实就2个

  • 分裂点:一般就是遍历所有特征的所有特征值,选取impurity最大的分成左右孩子节点,impurity的选取有信息熵(分类),最小均方差(回归)等方法
  • 预测值:一般取当前最多的class(分类)或者取均值(回归)

1.2. 随机森林

随机森林就是构建多棵决策树投票,在构建多棵树过程中,引入随机性,一般体现在两个方面,一是每棵树使用的样本进行随机抽样,分为有放回和无放回抽样。二是对每棵树使用的特征集进行抽样,使用部分特征训练。
在训练过程中,如果单机内存能放下所有样本,可以用多线程同时训练多棵树,树之间的训练互不影响。

2. spark RF优化策略

spark在实现RF时,使用了一些优化技巧,提高训练效率。

2.1. 逐层训练

当样本量过大,单机无法容纳时,只能采用分布式的训练方法,数据是在集群中的多台机器存放,如果按照单机的方法,每棵树完全独立访问样本数据,则样本数据的访问次数为数的个数k*每棵树的节点数N,相当于深度遍历。在spark的实现中,因为数据存放在不同的机器上,频繁的访问数据效率非常低,因此采用广度遍历的方法,每次构造所有树的一层,例如如果要训练10棵树,第一次构造所有树的第一层根节点,第二次构造所有深度为2的节点,以此类推,这样访问数据的次数降为树的最大深度,大大减少了机器之间的通信,提高训练效率。

2.2. 样本抽样

当样本存在连续特征时,其可能的取值可能是无限的,存储其可能出现的值占用较大空间,因此spark对样本进行了抽样,抽样数量

以下是使用Java编写Spark MLlib中的随机森林算法的示例代码: ```java import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.ml.classification.RandomForestClassificationModel; import org.apache.spark.ml.classification.RandomForestClassifier; import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator; import org.apache.spark.ml.feature.IndexToString; import org.apache.spark.ml.feature.StringIndexer; import org.apache.spark.ml.feature.VectorAssembler; import org.apache.spark.ml.feature.VectorIndexer; import org.apache.spark.ml.feature.VectorIndexerModel; import org.apache.spark.ml.linalg.Vector; import org.apache.spark.sql.Dataset; import org.apache.spark.sql.Row; import org.apache.spark.sql.SQLContext; public class RandomForestExample { public static void main(String[] args) { // 创建SparkConf对象 SparkConf sparkConf = new SparkConf().setAppName("RandomForestExample").setMaster("local"); // 创建JavaSparkContext对象 JavaSparkContext jsc = new JavaSparkContext(sparkConf); // 创建SQLContext对象 SQLContext sqlContext = new SQLContext(jsc); // 加载数据集 Dataset<Row> data = sqlContext.read().format("csv").option("header", "true").load("path/to/dataset.csv"); // 数据预处理 StringIndexer labelIndexer = new StringIndexer().setInputCol("label").setOutputCol("indexedLabel").fit(data); VectorAssembler assembler = new VectorAssembler().setInputCols(new String[]{"feature1", "feature2", "feature3"}).setOutputCol("features"); Dataset<Row> assembledData = assembler.transform(data); Dataset<Row>[] splits = assembledData.randomSplit(new double[]{0.7, 0.3}); Dataset<Row> trainingData = splits[0]; Dataset<Row> testData = splits[1]; // 构建随机森林分类模型 RandomForestClassifier rf = new RandomForestClassifier().setLabelCol("indexedLabel").setFeaturesCol("features").setNumTrees(10); VectorIndexerModel featureIndexer = new VectorIndexer().setInputCol("features").setOutputCol("indexedFeatures").setMaxCategories(4).fit(trainingData); IndexToString labelConverter = new IndexToString().setInputCol("prediction").setOutputCol("predictedLabel").setLabels(labelIndexer.labels()); // 训练模型 Dataset<Row> indexedTrainingData = featureIndexer.transform(trainingData); RandomForestClassificationModel model = rf.fit(indexedTrainingData); // 测试模型 Dataset<Row> indexedTestData = featureIndexer.transform(testData); Dataset<Row> predictions = model.transform(indexedTestData); predictions.select("predictedLabel", "label", "features").show(10); // 评估模型 MulticlassClassificationEvaluator evaluator = new MulticlassClassificationEvaluator().setLabelCol("indexedLabel").setPredictionCol("prediction").setMetricName("accuracy"); double accuracy = evaluator.evaluate(predictions); System.out.println("Test Error = " + (1.0 - accuracy)); // 关闭JavaSparkContext对象 jsc.stop(); } } ``` 其中,我们首先加载数据集并进行预处理,然后构建随机森林分类模型,使用训练数据训练模型,使用测试数据测试模型,并计算模型的准确率,最后关闭JavaSparkContext对象。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值