牛客网暑期ACM多校训练营(第五场)A (gpa)


题目描述

Kanade selected n courses in the university. The academic credit of the i-th course is s[i] and the score of the i-th course is c[i].

At the university where she attended, the final score of her is 

Now she can delete at most k courses and she want to know what the highest final score that can get.

输入描述:

The first line has two positive integers n,k

The second line has n positive integers s[i]

The third line has n positive integers c[i]

输出描述:

Output the highest final score, your answer is correct if and only if the absolute error with the standard answer is no more than 10-5

示例1

输入

复制

3 1
1 2 3
3 2 1

输出

复制

2.33333333333

说明

Delete the third course and the final score is 

备注:

1≤ n≤ 105

0≤ k < n

1≤ s[i],c[i] ≤ 103

题意:英语比较短,就不说了。

思路:0/1分数规划的裸题,直接看官方题解吧。

 可以理解为设最大值为Maxn,而现在为D,如果将D代入的上述方程>=0,那么必定有更优解,所以要继续二分变大。单纯针对这道题可以分析当k>=1时,正好选k门课就是最大的,选的越多分数越低 。

关于分数规划还有最优比率生成树与最优比率环的问题,把分数规划与图论结合起来,还得好好学学

关于分数规划在保存几个比较好的博客

https://blog.csdn.net/Jianzs_426/article/details/77899313

https://www.cnblogs.com/handsomecui/p/5116886.html

代码:


#include <bits/stdc++.h>
using namespace std;
#define ll long long
const int maxn=1e5+10;
double s[maxn],c[maxn];
double d[maxn];
bool pan(int n,int k,double x)
{
    for(int i=1;i<=n;i++)
    {
        d[i]=s[i]*(c[i]-x);
    }
    sort(d+1,d+1+n);
    double sum=0;
    for(int i=k+1;i<=n;i++)
    {
        sum+=d[i];
    }
    return sum>=0;
}
int main()
{
    int n,k;
    scanf("%d%d",&n,&k);
    for(int i=1; i<=n; i++)
    {
        scanf("%lf",&s[i]);
    }
    for(int i=1; i<=n; i++)
    {
        scanf("%lf",&c[i]);
    }
    double l=0,r=1010;
    while(r-l>1e-8)
    {
        double mid=(l+r)/2;
        if(pan(n,k,mid))
        {
            l=mid;
        }
        else r=mid;
    }
    printf("%.11lf\n",l);
    return 0;
}
/*
3 1
1 2 3
3 2 1
*/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值