Pell方程小总结

保存大佬博客:

http://www.matrix67.com/blog/archives/5556

http://blog.sina.com.cn/s/blog_5d06e2390100ll92.html

http://m.blog.csdn.net/blog/wh2124335/8871535

连分数:

https://blog.csdn.net/qq_33737036/article/details/78199297

 

//求特解

#include <set>
#include <map>
#include <bitset>
#include <deque>
#include <stack>
#include <queue>
#include <time.h>
#include <vector>
#include <string>
#include <math.h>
#include <cstring>
#include <cstdlib>
#include <stdio.h>
#include <iomanip>
#include <iostream>
#include <algorithm>
#define PI acos(-1.0)
#define ll long long
#define ull unsigned long long
using namespace std;

ll a[20000];
bool pell_minimum_solution(ll n,ll &x0,ll &y0)
{
    ll m=(ll)sqrt((double)n);
    double sq=sqrt(n);
    int i=0;
    if(m*m==n)return false;//当n是完全平方数则佩尔方程无解
    
    a[i++]=m;
    ll b=m,c=1;
    double tmp;
    do
    {
        c=(n-b*b)/c;
        tmp=(sq+b)/c;
        a[i++]=(ll)(floor(tmp));
        b=a[i-1]*c-b;
    }while(a[i-1]!=2*a[0]);
    ll p=1,q=0;
    for(int j=i-2;j>=0;j--)
    {
        ll t=p;
        p=q+p*a[j];
        q=t;
    }
    if((i-1)%2==0)
    {
        x0=p;
        y0=q;
    }
    else
    {
        x0=2*p*p+1;
        y0=2*p*q;
    }
    return true;
}

int main()
{
    ll n,x,y;
    while(~scanf("%lld",&n))
    {
        if(pell_minimum_solution(n,x,y))
        {
            printf("%lld^2-%lld*%lld^2=1\t",x,n,y);
            printf("%lld-%lld=1\n",x*x,n*y*y);
        }
    }
}

//已知特解求通解

x(n)=x(n-1)x(1)+dy(n-1)y(1);
y(n)=x(n-1)y(1)+y(n-1)x(1);

Pell 方程是形如 $x^2-dy^2=1$ 的二元二次方程,其中 $d$ 是正整数,$x$ 和 $y$ 是正整数。求解 Pell 方程的一种经典方法是使用连分数。下面是求解 Pell 方程的步骤: 1. 首先,我们找到 Pell 方程的一个基本解 $(x_0,y_0)$,可以通过暴力枚举或使用其他方法来找到基本解。 2. 我们使用基本解 $(x_0,y_0)$ 来构造一个无限循环小数: $$\sqrt{d}=[a_0;\overline{a_1,a_2,\ldots,a_r,2a_0,\overline{a_1,a_2,\ldots,a_r,2a_0,\ldots}}]$$ 其中,$a_0=\lfloor\sqrt{d}\rfloor$,$a_i$ 是循环节中的数字。 3. 我们将这个无限循环小数表示为一个连分数: $$\sqrt{d}=a_0+\frac{1}{a_1+\frac{1}{a_2+\frac{1}{\ldots+\frac{1}{2a_0+\frac{1}{a_1+\frac{1}{a_2+\ldots}}}}}}$$ 4. 我们使用连分数的递归公式,计算出前 $n$ 个连分数的值: $$\begin{aligned}&h_0=a_0, &k_0=1 \\ &h_1=a_0a_1+1, &k_1=a_1 \\ &h_i=a_ih_{i-1}+h_{i-2}, &k_i=a_ik_{i-1}+k_{i-2}\end{aligned}$$ 其中,$h_i$ 和 $k_i$ 分别表示连分数的第 $i$ 个逼近分数的分子和分母。 5. 我们可以证明,对于任意 $n$,$(h_n,k_n)$ 都是 Pell 方程的解。这是由连分数的性质所决定的。 6. 最终,我们可以得到 Pell 方程的所有正整数解 $(x,y)$,它们可以通过 $(x,y)=(x_0h_n+dy_0k_n,x_0k_n+y_0h_n)$ 来计算。 需要注意的是,如果循环节长度为奇数,则最后一个连分数的分母应该是 $2a_0$,否则应该是 $1$。此外,如果循环节长度为 $0$,则 $a_1$ 应该等于 $2a_0$。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值