理解监督学习:
分类:使用数据来预测类别
回归:使用数据预测真实值
了解OpenCV中的监督学习
OpenCV中机器学习模型派生自:cv::ml::StatModel
训练模型的类函数:train
评价模型的类函数:calcError
Opencv中构建机器学习模型遵循的逻辑
初始化
设置参数
训练模型:提供一个叫做train的类函数
预测新标签:提供一个叫做predict的类函数
评估模型:提供一个叫做caclError的类函数
使用评分函数评估模型性能
scikit-learn的metrics模块中提供了大量的评分函数,用于 评估模型预测的质量(机器学习系统最重要的一部分)
使用准确率、精确率和召回率对分类器进行评分
二值分类任务中,有几种不同方法评估分类效果,常用指标
accuracy_score:准确率
precision_score:精确率
recall_score:召回率
使用均方误差、可释误差、和R方值对回归器评分
主要用于回归模型
mean_squared_error:均方误差,计算训练数据集中数据点的预测值与真实值的平方误差,再在所有数据点上计算它们的平均值
explained_variance_score:可释放误差,计算模型对于测试数据的方差或者离散度的释放长度
r2_score:R^2值和可释方差值有密切相关,但是使用无偏方差估计,也被称作决定系数
本节主要函数及库:
import numpy as np np.random.seed(42) y_true = np.random.randint(0,2,size=5) y_pred= np.ones(5,dtype=np.int32) from sklearn import metrics ##################分类模型##################### #准确率 metrics.accuracy_score(y_true, y_pred) #精确率 metrics.precision_score(y_true,y_pred) #召回率 metrics.recall_score(y_true, y_pred) ##################回归模型##################### #均方差 metrics.mean_squared_error(y_true, y_pred) #可释放方差 metrics.explained_variance_score(y_true, y_pred) #R方差 metrics.r2_score(y_true, np.mean(y_true)*np.ones_like(y_true))
gitee库地址