机器学习:使用OpenCV和Python进行智能图像处理,笔记——3-1:理解监督学习

理解监督学习:

分类:使用数据来预测类别

回归:使用数据预测真实值

了解OpenCV中的监督学习

OpenCV中机器学习模型派生自:cv::ml::StatModel 

     训练模型的类函数:train

     评价模型的类函数:calcError

Opencv中构建机器学习模型遵循的逻辑

     初始化

     设置参数

     训练模型:提供一个叫做train的类函数

     预测新标签:提供一个叫做predict的类函数

     评估模型:提供一个叫做caclError的类函数

使用评分函数评估模型性能

scikit-learn的metrics模块中提供了大量的评分函数,用于 评估模型预测的质量(机器学习系统最重要的一部分)

使用准确率、精确率和召回率对分类器进行评分

     二值分类任务中,有几种不同方法评估分类效果,常用指标

          accuracy_score:准确率

          precision_score:精确率

          recall_score:召回率

使用均方误差、可释误差、和R方值对回归器评分

    主要用于回归模型

          mean_squared_error:均方误差,计算训练数据集中数据点的预测值与真实值的平方误差,再在所有数据点上计算它们的平均值

          explained_variance_score:可释放误差,计算模型对于测试数据的方差或者离散度的释放长度

          r2_score:R^2值和可释方差值有密切相关,但是使用无偏方差估计,也被称作决定系数

 

本节主要函数及库:

import numpy as np
np.random.seed(42)
y_true = np.random.randint(0,2,size=5)
y_pred= np.ones(5,dtype=np.int32)

from sklearn import metrics
##################分类模型#####################
#准确率
metrics.accuracy_score(y_true, y_pred)
#精确率
metrics.precision_score(y_true,y_pred)
#召回率
metrics.recall_score(y_true, y_pred)

##################回归模型#####################
#均方差
metrics.mean_squared_error(y_true, y_pred)
#可释放方差
metrics.explained_variance_score(y_true, y_pred)
#R方差
metrics.r2_score(y_true, np.mean(y_true)*np.ones_like(y_true))

gitee库地址

https://gitee.com/scott_zhao/MachineLearning_for_OpenCV

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值