7、列出所有简约反转序列:新算法与新视角

列出所有简约反转序列:新算法与新视角

1. 现有ASSR方法框架

假设我们要对一个排列 π 进行排序,其反转距离为 d(π)。一个 i - 解是 ASSR 问题的部分解,代表长度为 i 的最小排序序列。i - 层是所有 i - 解的集合,所以 i - 层中的每个 i - 解都会生成一个距离等于 d(π) - i 的排列。

解决 ASSR 问题的现有框架反复应用 Siepel 的 O(n³) ASR 算法,这个框架(ASSR - FW)流程如下:
1. 生成 (i + 1) - 解集合
- 对与 i - 解对应的排列应用 Siepel 的 ASR 算法,生成接下来的 O(n²) 个排序反转。
- 将每个排序反转附加到 i - 解上,生成 O(n²) 个 (i + 1) - 解的列表。
2. 将 (i + 1) - 解添加到 (i + 1) - 层
重复这两个步骤,直到获得所有 d(π) - 解。

下面是该流程的 mermaid 流程图:

graph TD;
    A[开始] --> B[选择 i - 解];
    B --> C[应用 Siepel 的 ASR 算法];
    C --> D[生成 (i + 1) - 解];
    D --> E[添加到 (i + 1) - 层];
    E --> F{i < d(π)?};
    F -- 是 --> B;
    F -- 否 --> G[结束];
</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值