TensorFlow 深度学习官网教程笔记系列:2

前言

入门 TensorFlow 深度学习,官网教程是非常不错的学习资料,但是教程内容多为实例展示,对其中函数、对象的完整用法缺乏深入解释,入门者常常会感觉「知其然而不知其所以然」。

本人正在入门学习 TensorFlow 深度学习,目前尚无「知识的诅咒」,可以站在小白的角度上去看这些陌生的函数、对象和参数。这个笔记系列会在官网教程的基础上,添加一些必要的注释和拓展阅读资料,希望帮助入门的小伙伴们对 TensorFlow 有更加清晰的理解。

注释会以脚注的形式,添加在教程的描述、代码块和运行结果之后。

本系列按照官网教程的顺序展开,大家可以当作官网教程来阅读。本人小白,请大佬轻喷。

系列目录:

  1. 《初学者的 TensorFlow 2.0 教程》
  2. 《基本分类:对服装图像进行分类》

本教程来自TensorFlow官网

教程正文

本教程训练一个神经网络模型,对运动鞋和衬衫等服装图像进行分类。这个指南是对完整 TensorFlow 程序的快速概述。

本教程使用了 tf.keras,它是 TensorFlow 中用来构建和训练神经网络模型的高级 API。

# TensorFlow and tf.keras
import tensorflow as tf
from tensorflow import keras

# Helper libraries
import numpy as np
import matplotlib.pyplot as plt

print(tf.__version__)

2.8.0

1. 导入 Fashion MNIST 数据集

本教程使用 Fashion MNIST 数据集,该数据集包含 10 个类别的 70,000 个灰度图像。这些图像以低分辨率(28x28 像素)展示了单件衣物,如下所示:

Fashion MNIST 被用于替代经典的 MNIST 数据集,后者常被用作计算机视觉机器学习程序的“Hello, World”。MNIST 数据集包含手写数字(0、1、2 等)的图像。MNIST 和 Fashion MNIST 在数据格式上是完全相同的,这两个数据集都相对较小,都用于验证某个算法是否按预期工作,对于代码的测试和调试,它们都是很好的起点。

本教程使用 Fashion MNIST 来实现多样化,因为它比常规 MNIST 更具挑战性。

本教程使用 60,000 个图像来训练网络,使用 10,000 个图像来评估网络学习对图像分类的准确率。我们可以直接从 TensorFlow 访问 Fashion MNIST。

运行以下代码从 TensorFlow 中导入和加载 Fashion MNIST 数据:

fashion_mnist = keras.datasets.fashion_mnist

(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()

加载数据集会返回四个 NumPy 数组:

  • train_images 和 train_labels 数组是训练集,即模型用于学习的数据。
  • 测试集、test_images 和 test_labels 数组会被用来对模型进行测试。

图像是 28x28 的 NumPy 数组,像素值介于 0 到 255 之间。标签是整数数组,介于 0 到 9 之间。这些标签对应于图像所代表的服装

标签
0T恤/上衣
1裤子
2套头衫
3连衣裙
4外套
5凉鞋
6衬衫
7运动鞋
8
9短靴

每个图像都会被映射到一个标签。由于数据集不包括类名称,我们将它们存储在下方,供稍后绘制图像时使用:

class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
               'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

2. 浏览数据

在训练模型之前,我们先浏览一下数据集的格式。以下代码显示训练集中有 60,000 个图像,每个图像由 28 x 28 的像素表示:

train_images.shape

(60000, 28, 28)

同样,训练集中有 60,000 个标签:

len(train_labels)

60000

每个标签都是一个 0 到 9 之间的整数:

train_labels

array([9, 0, 0, …, 3, 0, 5], dtype=uint8)

测试集中有 10,000 个图像。同样,每个图像都由 28x28 个像素表示:

test_images.shape

(10000, 28, 28)

测试集包含 10,000 个图像标签:

len(test_labels)

10000

3. 预处理数据

在训练网络之前,必须对数据进行预处理。检查训练集中的第一个图像,可以看到像素值处于 0 到 255 之间:

plt.figure()
plt.imshow(train_images[0])
plt.colorbar()
plt.grid(False)
plt.show()


我们需要将这些值缩小至 0 到 1 之间,然后将其馈送到神经网络模型。为此,我们将这些值除以 255,并以相同的方式对训练集测试集进行预处理:

train_images = train_images / 255.0

test_images = test_images / 255.0

为了验证数据的格式是否正确,以及我们是否已准备好构建和训练网络,让我们显示训练集中的前 25 个图像,并在每个图像下方显示类名称。

plt.figure(figsize=(10,10))
for i in range(25):
    plt.subplot(5,5,i+1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(train_images[i], cmap=plt.cm.binary)
    plt.xlabel(class_names[train_labels[i]])
plt.show()

4. 构建模型

构建神经网络需要先配置模型的层,然后再编译模型。

4.1 设置层

神经网络的基本组成部分是。层会从向其馈送的数据中提取表示形式。

大多数深度学习都包括将简单的层链接在一起。大多数层(如 tf.keras.layers.Dense)都具有在训练期间才会学习的参数。

model = keras.Sequential([
    keras.layers.Flatten(input_shape=(28, 28)),
    keras.layers.Dense(128, activation='relu'),
    keras.layers.Dense(10)
])

该网络的第一层 tf.keras.layers.Flatten 将图像格式从二维数组(28 x 28 像素)转换成一维数组(28 x 28 = 784 像素)。将该层视为图像中未堆叠的像素行并将其排列起来。该层没有要学习的参数,它只会重新格式化数据。

展平像素后,网络会包括两个 tf.keras.layers.Dense 层的序列。它们是密集连接或全连接神经层。第一个 Dense 层有 128 个节点(或神经元)。第二个(也是最后一个)层会返回一个长度为 10 的 logits 数组。每个节点都包含一个得分,用来表示当前图像属于 10 个类中的哪一类。

4.2编译模型

在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:

  • 损失函数 - 用于测量模型在训练期间的准确率。您会希望最小化此函数,以便将模型“引导”到正确的方向上。
  • 优化器 - 决定模型如何根据其看到的数据和自身的损失函数进行更新。
  • 指标 - 用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。
model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), # 注释1,2
              metrics=['accuracy'])

注释 1:
SparseCategoricalCrossentropy 是 Keras 提供的损失函数之一,字面上的翻译是「稀疏矩阵 分类 交叉熵」,简单地说,它是一种计算两种分布(模型预测结果与样本标签)之间的差距的算法,可以用作损失函数。

tf.keras.losses 中有另一个类似的损失函数 CategoricalCrossentropy ,这两个损失函数的使用区别在于数据集样本的标签 y_label 的数据格式:

  • 如果样本的标签 y_label 是使用单个数字来表示此样本的分类(如:样本 1 属于第三类,其标签为「2」),那么损失函数使用 SparseCategoricalCrossentropy。
  • 如果样本的标签 y_label 经过 one-hot 编码(如:样本 1 属于第二类,其标签为「0 0 1 0 0 0 0 0 0」),那么损失函数使用 CategoricalCrossentropy。
  • 本教程中每一个样本的标签为单个数字,因此使用 SparseCategoricalCrossentropy。

注释 2

参数 from_logits 声明模型所输出的数据 y_pred 是否已经是「概率」。from_logits=False 表示 y_pred 已经经过 softmax 激活,其值已经是概率,训练时将直接将 y_pred 用于损失函数的计算;相反,from_logits=True 表示 y_pred 是未经过 softmax 激活的线性数据(logits),训练时会对 y_pred 执行 softmax 计算将其转换为分类概率,再计算损失函数。

在本教程中,modol 的最后一层,即输出层未添加 activation=‘softmax’,因此,此处应该设置 from_logits =True.

我们可以进行一个实验,设置 from_logits =False ,然后运行此代码块和下方的代码块执行训练,可以看到训练过程中模型准确率一直很低。
然后保持 from_logits =False ,在上方「层设置」中为模型最后一层添加 softmax 激活函数:keras.layers.Dense(10,activation=‘softmax’) ,再次执行训练,可以看到此时模型准确率恢复正常。

5. 训练模型

训练神经网络模型需要执行以下步骤:

  1. 将训练数据馈送给模型。在本例中,训练数据位于 train_images 和 train_labels 数组中。
  2. 模型学习将图像和标签关联起来。
  3. 要求模型对测试集(在本例中为 test_images 数组)进行预测。
  4. 验证预测是否与 test_labels 数组中的标签相匹配。
5.1 向模型馈送数据

我们调用 model.fit 方法来执行训练,这样命名是因为该方法会将模型与训练数据进行“拟合”:

model.fit(train_images, train_labels, epochs=10)

Epoch 1/10
1875/1875 [] - 16s 8ms/step - loss: 0.5002 - accuracy: 0.8232
Epoch 2/10
1875/1875 [
] - 3s 2ms/step - loss: 0.3782 - accuracy: 0.8640
Epoch 3/10
1875/1875 [] - 3s 2ms/step - loss: 0.3388 - accuracy: 0.8767
Epoch 4/10
1875/1875 [
] - 3s 2ms/step - loss: 0.3160 - accuracy: 0.8842
Epoch 5/10
1875/1875 [] - 3s 2ms/step - loss: 0.2967 - accuracy: 0.8909
Epoch 6/10
1875/1875 [
] - 3s 2ms/step - loss: 0.2808 - accuracy: 0.8951
Epoch 7/10
1875/1875 [] - 3s 2ms/step - loss: 0.2708 - accuracy: 0.8996
Epoch 8/10
1875/1875 [
] - 3s 2ms/step - loss: 0.2580 - accuracy: 0.9044
Epoch 9/10
1875/1875 [] - 14s 8ms/step - loss: 0.2490 - accuracy: 0.9072
Epoch 10/10
1875/1875 [
] - 3s 2ms/step - loss: 0.2380 - accuracy: 0.9109

<keras.callbacks.History at 0x190f65e2348>

在模型训练期间,会显示损失和准确率指标。此模型在训练数据上的准确率达到了 0.91(或 91%)左右。

5.2 评估准确率

接下来,比较模型在测试数据集上的表现:

test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2) # 注释3

print('\nTest accuracy:', test_acc)

313/313 - 2s - loss: 0.3634 - accuracy: 0.8703 - 2s/epoch - 6ms/step

Test accuracy: 0.8702999949455261

注释 3:

model.evaluate 的参数 verbose 为进行评估时日志显示的设置:

  • vervose=0 表示不输出日志信息
  • vervose=1 表示输出进度条记录
  • vervose=2 表示输出进度条记录,只输出一行信息

结果表明,模型在测试数据集上的准确率略低于训练数据集。训练准确率和测试准确率之间的差距代表过拟合。过拟合是指深度学习模型在新的、以前未曾见过的输入上的表现不如在训练数据上的表现。过拟合的模型会“记住”训练数据集中的噪声和细节,从而对模型在新数据上的表现产生负面影响。有关更多信息,请参阅以下内容:

5.3 进行预测

在模型经过训练后,我们可以使用它对一些图像进行预测。模型具有线性输出,即 logits。我们可以附加一个 softmax 层,将 logits 转换成更容易理解的概率。

probability_model = tf.keras.Sequential([model, 
                                         tf.keras.layers.Softmax()])
predictions = probability_model.predict(test_images)

在上例中,模型预测了测试集中每个图像的标签。我们来看看第一个预测结果:

predictions[0]

array([1.7339911e-06, 8.9343489e-12, 2.2049122e-08, 6.5665404e-11,
8.3412379e-09, 1.0090913e-03, 9.9886641e-08, 4.0263538e-03,
2.7445196e-07, 9.9496245e-01], dtype=float32)

预测结果是一个包含 10 个数字的数组。它们代表模型对 10 种不同服装中每种服装的“置信度”。可以看到哪个标签的置信度值最大:

np.argmax(predictions[0])

9

因此,该模型非常确信这个图像是短靴,或 class_names[9]。通过检查测试标签发现这个分类是正确的:

test_labels[0]

9

可以将其绘制成图表,看看模型对于全部 10 个类的预测。

def plot_image(i, predictions_array, true_label, img):
  predictions_array, true_label, img = predictions_array, true_label[i], img[i]
  plt.grid(False)
  plt.xticks([])
  plt.yticks([])

  plt.imshow(img, cmap=plt.cm.binary)

  predicted_label = np.argmax(predictions_array)
  if predicted_label == true_label:
    color = 'blue'
  else:
    color = 'red'

  plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label],
                                100*np.max(predictions_array),
                                class_names[true_label]),
                                color=color)

def plot_value_array(i, predictions_array, true_label):
  predictions_array, true_label = predictions_array, true_label[i]
  plt.grid(False)
  plt.xticks(range(10))
  plt.yticks([])
  thisplot = plt.bar(range(10), predictions_array, color="#777777")
  plt.ylim([0, 1])
  predicted_label = np.argmax(predictions_array)

  thisplot[predicted_label].set_color('red')
  thisplot[true_label].set_color('blue')
5.4 验证预测结果

在模型经过训练后,我们可以使用它对一些图像进行预测。

我们来看看第 0 个图像、预测结果和预测数组。正确的预测标签为蓝色,错误的预测标签为红色。数字表示预测标签的百分比(总计为 100)。

i = 0
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plot_image(i, predictions[i], test_labels, test_images)
plt.subplot(1,2,2)
plot_value_array(i, predictions[i],  test_labels)
plt.show()

i = 12
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plot_image(i, predictions[i], test_labels, test_images)
plt.subplot(1,2,2)
plot_value_array(i, predictions[i],  test_labels)
plt.show()

让我们用模型的预测绘制几张图像。请注意,即使置信度很高,模型也可能出错。

# Plot the first X test images, their predicted labels, and the true labels.
# Color correct predictions in blue and incorrect predictions in red.
num_rows = 5
num_cols = 3
num_images = num_rows*num_cols
plt.figure(figsize=(2*2*num_cols, 2*num_rows))
for i in range(num_images):
  plt.subplot(num_rows, 2*num_cols, 2*i+1)
  plot_image(i, predictions[i], test_labels, test_images)
  plt.subplot(num_rows, 2*num_cols, 2*i+2)
  plot_value_array(i, predictions[i], test_labels)
plt.tight_layout()
plt.show()

6. 使用训练好的模型

最后,使用训练好的模型对单个图像进行预测。

# Grab an image from the test dataset.
img = test_images[1]

print(img.shape)

(28, 28)

tf.keras 模型经过了优化,可同时对一个或一组样本进行预测。因此,即使只使用一个图像,我们也需要将其添加到列表中:

# Add the image to a batch where it's the only member.
img = (np.expand_dims(img,0))

print(img.shape)

(1, 28, 28)

现在预测这个图像的正确标签:

predictions_single = probability_model.predict(img)

print(predictions_single)

​ [[1.0675135e-05 2.4023437e-12 9.9772269e-01 1.3299730e-09 1.2968916e-03
​ 8.7469149e-14 9.6970733e-04 5.4669354e-19 2.4514609e-11 1.8405429e-12]]

plot_value_array(1, predictions_single[0], test_labels)
_ = plt.xticks(range(10), class_names, rotation=45)

keras.Model.predict 会返回一组列表,每个列表对应一批数据中的每个图像。在批次中获取对我们(唯一)图像的预测:

np.argmax(predictions_single[0])

2

该模型会按照预期预测标签。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值