Problem Description
A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973。
Input
数据的第一行是一个T,表示有T组数据。
每组数据的第一行有n(2 <= n <= 10)和k(2 <= k < 10^9)两个数据。接下来有n行,每行有n个数据,每个数据的范围是[0,9],表示方阵A的内容。
Output
对应每组数据,输出Tr(A^k)%9973。
Sample Input
2
2 2
1 0
0 1
3 99999999
1 2 3
4 5 6
7 8 9
Sample Output
2
2686
问题分析
挺好理解的矩阵快速幂问题,智障的我一开始直接理解为把矩阵的每个元素k 次方,忘得真快啊。顺便借地整理一下矩阵乘法的思路(示例:a*b=c)。
1. 常用的基本矩阵乘法,即由三重循环进行累加求和。
代码示例:
void multi(int a[m][n],b[n][p],c[m][p])
{
int temp;
for(int i=0;i<m;i++)
{
for(int j=0;j<p;j++)
{
temp=0;
for(int k=0;k<n;k++)
temp+=a[i][k]*b[k][j]);
c[i][j]=temp;
}
}
}
2.对矩阵 a,b,c逐行进行访问,以提高访存效率。即对于矩阵 a 的每一行,第 j 列的元素分别和矩阵 b 的第 j 个元素相乘,然后对于每一列的结果进行累加求和,从而得到矩阵 c 第 i 行第 k 列的结果。
代码示例:
void multi(int a[m][n],b[n][p],c[m][p])
{
int temp[3]={0};
for(int i=0;i<m;i++)
{
for(int j=0;j<p;j++)
temp[j]=0;
for(int j=0;j<n;j++)
{
for(int k=0;k<p;k++)
{
temp[k]+=a[i][j]*b[j][k];
}
}
for(int k=0;k<p;k++)
c[i][k]=temp[k];
}
}
代码实现
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
#define mod 9973
typedef __int64 ll;
ll t;
#define n 16
int m;
struct matrix
{
int a[n][n];
}z0,z1;
matrix multi(matrix x,matrix y)
{
matrix temp;
memset(temp.a,0,sizeof(temp.a));
for(int i=0;i<m;i++)
for(int j=0;j<m;j++)
for(int k=0;k<m;k++)
temp.a[i][j]=(temp.a[i][j]+x.a[i][k]*y.a[k][j])%mod;
return temp;
}
matrix quick_pow(ll p)
{
memset(z1.a,0,sizeof(z1.a));
for(int i=0;i<m;i++)
z1.a[i][i]=1;
while(p)
{
if(p%2==1)
z1=multi(z1,z0);
p/=2;
z0=multi(z0,z0);
}
return z1;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%I64d",&m,&t);
for(int i=0; i<m; i++)
for(int j=0; j<m; j++)
scanf("%d",&z0.a[i][j]);
matrix result =quick_pow(t);
int r=0;
for(int i=0; i<m; i++)
r+=result.a[i][i];
printf("%d\n",r%mod);
}
return 0;
}