题意
本题的要求很简单,就是求N个数字的和。麻烦的是,这些数字是以有理数“分子/分母”的形式给出的,你输出的和也必须是有理数的形式。
输入格式:
输入第一行给出一个正整数N(<=100)。随后一行按格式“a1/b1 a2/b2 …”给出N个有理数。题目保证所有分子和分母都在长整型范围内。另外,负数的符号一定出现在分子前面。
输出格式:
输出上述数字和的最简形式 —— 即将结果写成“整数部分 分数部分”,其中分数部分写成“分子/分母”,要求分子小于分母,且它们没有公因子。如果结果的整数部分为0,则只输出分数部分。
输入样例1:
5
2/5 4/15 1/30 -2/60 8/3
输出样例1:
3 1/3
输入样例2:
2
4/3 2/3
输出样例2:
2
输入样例3:
3
1/3 -1/6 1/8
输出样例3:
7/24
解题思路
开始直到最后求完和才进行约分,最后一组测试数据是浮点错误,原因是最后求的分子或者分母会超过整型存储的范围变成0,所以为了避免这种错误要在求和的同时进行约分,另外还有一个不知所以然的WA,直接贴代码咯,中文命名勿喷<(^-^)>
代码实现
#include<iostream>
#include<cstdio>
#include<stdlib.h>
#define ll long long int
ll gcd(ll a,ll b)
{
if(a%b==0)
return b;
else
return gcd(b,a%b);
}
int main()
{
int n;
ll sumzi=0,summu=1;
ll fenmu,fenzi;
ll zhengshu;
ll gcd1,gcd2,gcd3;
scanf("%d",&n);
for(int i=0;i<n;i++)
{
scanf("%lld%*c%lld",&fenzi,&fenmu);
gcd1=(sumzi==0||summu==0)?1:gcd(abs(sumzi),abs(summu));
sumzi=sumzi/gcd1;
summu=summu/gcd1;
gcd2=(fenzi==0||fenmu==0)?1:gcd(abs(fenzi),abs(fenmu));
fenzi=fenzi/gcd2;
fenmu=fenmu/gcd2;
sumzi=sumzi*fenmu+summu*fenzi;
summu=summu*fenmu;
}
zhengshu=sumzi/summu;
sumzi=sumzi-(zhengshu*summu);
gcd3=(sumzi==0||summu==0)?1:gcd(sumzi,summu);
sumzi=sumzi/gcd3;
summu=summu/gcd3;
if(zhengshu!=0)
{
printf("%lld",zhengshu);
if(sumzi!=0)
printf(" ");
}
if(sumzi!=0)
printf("%lld/%lld",sumzi,summu);
if(zhengshu==0&&sumzi==0)
printf("0");
return 0;
}