牛客网 不凡的夫夫(斯特林公式)

链接:https://www.nowcoder.com/acm/contest/75/A
来源:牛客网

题目描述

夫夫有一天对一个数有多少位数感兴趣,但是他又不想跟凡夫俗子一样,
所以他想知道给一个整数n,求n!的在8进制下的位数是多少位。
输入描述:
第一行是一个整数 t(0<t<=1000000) t ( 0 < t <= 1000000 ) (表示t组数据)
接下来t行,每一行有一个整数n(0<=n<=10000000)

输出描述:

输出n!在8进制下的位数。

输入

3
4
2
5

输出

2
1
3

解题思路

斯特林公式: n!(2πn)(ne)n n ! ≈ ( 2 π n ) ( n e ) n

列等式 n!=8k n ! = 8 k 得k,则k+1即为所求位数。

(2πn)(ne)n=8k ( 2 π n ) ( n e ) n = 8 k ,

两边同时取对数有:

log((2πn)(ne)n)=log((2πn))+log((ne)n) l o g ( ( 2 π n ) ( n e ) n ) = l o g ( ( 2 π n ) ) + l o g ( ( n e ) n ) =log((2πn))+n(log(n)log(e)) = l o g ( ( 2 π n ) ) + n ( l o g ( n ) − l o g ( e ) )

log(8k)=klog(8) l o g ( 8 k ) = k ∗ l o g ( 8 ) ,

所以, k=log((2πn))+n(log(n)log(e))log(8) k = l o g ( ( 2 π n ) ) + n ( l o g ( n ) − l o g ( e ) ) l o g ( 8 ) ,k+1即为所求位数。

PS:cin取消同步依旧会挂掉。

代码实现

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define maxn 107
#define INF 0x3f3f3f3f
const double PI=acos(-1.0);
const double epx=exp(1.0);
int main()
{
    int T;
    ll n;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%lld",&n);
        if(n==0||n==1)
            printf("1\n");
        else
            printf("%lld\n",(ll)(((log10(sqrt(2*PI*n))+n*(log10(n)-log10(epx)))/log10(8))+1));
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值