Pyramidal Convolution: Rethinking Convolutional Neural Networks for Visual Recognition
Pyramidal Convolution:Rethinking Convolutional Neural Networks for Visual Recognition,cvpr,2020.
链接:paper
代码:github
这篇论文不同于其他论文的关键点在于:卷积核的多尺度。同时为了尽可能的降低整体的计算复杂度,在每个group内在进行一次分组卷积,确保金字塔卷积的计算量与标准卷积的计算量相当。
Abstract
该文提出一种金字塔卷积(Pyramidal Convolution, PyConv),它可以用多个滤波器尺度对输入进行处理。PyConv包含一个核金字塔,每一层包含不同类型的滤波器(滤波器的大小与深度可变,因此可以提取不同尺度的细节信息)。除了上述提到的可以提取多尺度信息外,相比标准卷积,PyConv实现高效,即不会提升额外的计算量与参数量。更进一步,它更为灵活并具有可扩展性,为不同的应用提升了更大的架构设计空间。
PyConv几乎可以对每个CV任务都有正面影响,作者基于PyC