Multi-Scale Body-Part Mask Guide Attention for Person Re-identification
论文:Multi-Scale Boyd-Part Mask Guide Attention for Person Re-identification
论文链接:MMGA
代码:
摘要
背景:由于人的姿态变化,不同的光照、遮挡、错位、背景杂乱等原因,对人的重识别仍然具有挑战性。
贡献:文中提出了一种多尺度身体局部语义掩模引导注意力网络(MMGA),可以联合全身和局部的注意力,帮助提取全局和局部特征。在MMGA 中,使用身体部位的语义掩模信息来指导相应位置注意力的训练。
模型评估:实验结果表明,该方法可以有效的降低人的姿态估计、不对称和背景杂波的影响。该方法在Market1501数据集实现 rank-1/mPA 的 95%/ 87.2%,在DukeMTMC-reID数据集上实现 rank-1/mAP的89.5% / 78.1%,优于当前的最新方法。
引言
最近的一些研究表明,定位身体重要部位并学习这些信息区域的有鉴别性的特征,可以减少背景杂波和遮挡的负面影响,从而提高ReID 的精度。受到人视觉系统的启发,采用人体掩模指导注意模型训练,将人体从背景中分割出来,然后利用