Python遥感图像处理应用篇037 GDAL+Scikit-image遥感图像主成分分析PCA

本文介绍了如何利用GDAL和Scikit-image库在Python中进行遥感图像的主成分分析(PCA)。通过6个波段的数据,展示了原图与PCA后的RGB图像效果,并详细讲解了PCA的计算过程和代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.计算效果图

使用多波段遥感图像进行主成分分析,这里使用了6个波段的数据计算和显示效果图如下:左边是原图像IR+R+G显示图,右边是计算得到的3个主成分组合显示的RGB图像。

 2.计算方法详解

使用GDAL库读取和保存遥感图像,使用numpy对图像数据进行相应的变换和计算,使用Scikit-image库中的PCA方法计算主成分。

使用GDAL对图像数据的读取和保存这里不做赘述。

图像特征值和特征向量计算代码:

def calculate_eigenvalues(data_matrix):
    # 计算协方差矩阵
    covariance_matrix = np.cov(data_matrix, rowvar=False)
    # 计算特征值和特征向量
    eigenvalues, eigenvectors = np.linalg.eig(covariance_matrix)
    # 对特征值进行排序
    sorted_indices = np.argsort(eigenvalues)[::-1]
    sorted_eigenvalues = eigenvalues[sorted_
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

空中旋转篮球

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值