shuffle 过程的优化(MapReduce 的优化)
combiner 合并优化
在 map 阶段提前进行了一次合并,一般来讲等同于提前执行了 reduce 操作
好处:可以降低 reduce 的压力
为什么说在 map 阶段提前运行 reduce 方法可以降低 reduce 的压力?
在 map阶段的进行合并是并行的(分布式的)。
combiner 合并可以解决数据倾斜问题:
什么是数据倾斜:简单来将,就是数据分配不均匀
换个通俗易懂的解释,就是一帮人干活,累的累死,闲的闲死
可以选择性的把大量的相同 key 数据先进行一个合并
然后再交给 reduce 来处理,这样做的好处很多
即减轻了 map 端向 reduce 端发送的数据量 (减轻了网络带宽)
也减轻了 map 端和 reduce 端中间的 shuffle 阶段的数据拉取数量 (本地化磁盘 IO 速率)
注意:不是所有处理数据时都可以使用合并,只有当处理的数据的 value 相同时,才可以使用 combiner 合并进行优化
compress 压缩优化:大大减少磁盘 IO 以及网络 IO
MapReduce 有很多地方都可以压缩
输入的就是一个压缩文件
map shuffle 中合并成一个大文件,对该文件进行压缩,reduce 过来取数据就是压缩之后的数
检查本地库支持哪些压缩:
bin/hadoop checknative
修改压缩库,只需要替换 native 包即可,常用用的压缩格式:snappy;lzo;lz4
配置方式:
方式一:main方法中Configuration
方式二:在配置文件中
全局修改,所有MapReduce都生效
方式三:运行的时候通过自定义配置
bin/yarn jar xxx.jar -DXX=yy -Daa=bb MianClass input_path output_Path
检查是否配置成功
方式一:8088ui界面 -》history -》Configuration-》查看对应配置参数
方式二:查看计数器,Linux 中的结果输出信息
计数器:
http://blog.songchunmin.com/701.html
在 map 或者 reduce 中使用计数器
context.getCounter(Temperature.TOTAL).increment(1);