【spark】spark streaming入门——官方文档的总结

本文介绍了Spark Streaming的基本概念,包括DStream的定义和操作,强调了UpdateStateByKey、Transform和Window操作的重要性。通过一个实时WordCount的例子展示了如何使用Spark Streaming,并指出在需要累加结果时需使用updateStateByKey。最后,讨论了Spark Streaming与Kafka的整合,用于网站点击流实时统计。
摘要由CSDN通过智能技术生成

spark streaming简介

Spark Streaming类似于Apache Storm,用于流式数据的处理。根据其官方文档介绍,Spark Streaming有高吞吐量和容错能力强等特点。Spark Streaming支持的数据输入源很多,例如:Kafka、Flume、Twitter、ZeroMQ和简单的TCP套接字等等。数据输入后可以用Spark的高度抽象原语如:map、reduce、join、window等进行运算。而结果也能保存在很多地方,如HDFS,数据库等。另外Spark Streaming也能和MLlib(机器学习)以及Graphx完美融合。

DStream
什么是DSteam:

Discretized Stream是Spark Streaming的基础抽象,代表持续性的数据流和经过各种Spark原语操作后的结果数据流。在内部实现上,DStream是一系列连续的RDD来表示。每个RDD含有一段时间间隔内的数据,如下图:
在这里插入图片描述
对数据的操作也是按照RDD为单位来进行的
在这里插入图片描述
计算过程由Spark engine来完成
在这里插入图片描述

DStream的相关操作:

DStream上的原语与RDD的类似,分为Transformations(转换)和Output Operations(输出)两种,此外转换操作中还有一些比较特殊的原语,如:updateStateByKey()、transform()以及各种Window相关的原语。

Transformations on DStreams

在这里插入图片描述

需要了解的特殊transformations:

1.UpdateStateByKey Operation
UpdateStateByKey原语用于记录历史记录,上文中Word Count示例中就用到了该特性。若不用UpdateStateByKey来更新状态,那么每次数据进来后分析完成后,结果输出后将不在保存

2.Transform Operation
Transform原语允许DStream上执行任意的RDD-to-RDD函数。通过该函数可以方便的扩展Spark API。此外,MLlib(机器学习)以及Graphx也是通过本函数来进行结合的。

3.Window Operations
Window Operations有点类似于Storm中的State,可以设置窗口的大小和滑动窗口的间隔来动态的获取当前Steaming的允许状态
在这里插入图片描述

Output Operations on DStreams

Output Operations可以将DStream的数据输出到外部的数据库或文件系统,当某个Output Operations原语被调用时(与RDD的Action相同),streaming程序才会开始真正的计算过程。
在这里插入图片描述

实战演示:

用Spark Streaming实现实时WordCount

架构图:
在这里插入图片描述
1.安装并启动生成者
首先在一台Linux(ip:192.168.10.101)上用YUM安装nc工具

yum install -y nc

启动一个服务端并监听9999端口

nc -lk 9999

2.编写Spark Streaming程序

object NetworkWordCount {
  def main(args: Array[String]) {
    //设置日志级别
    LoggerLevel.setStreamingLogLevels()
    //创建SparkConf并设置为本地模式运行
    //注意local[2]代表开两个线程
    val conf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount")
    //设置DStream批次时间间隔为2秒
    val ssc = new StreamingContext(conf, Seconds(2))
    //通过网络读取数据
    val lines = ssc.socketTextStream("192.168.10.101", 9999)
    //将读到的数据用空格切成单词
    val words = lines.flatMap(_.split(" "))
    //将单词和1组成一个pair
    val pairs = words.map(word => (word, 1))
    //按单词进行分组求相同单词出现的次数
    val wordCounts = pairs.reduceByKey(_ + _)
    //打印结果到控制台
    wordCounts.print()
    //开始计算
    ssc.start()
    //等待停止
    ssc.awaitTermination()
  }
}


3.启动Spark Streaming程序:由于使用的是本地模式"local[2]"所以可以直接在本地运行该程序
注意:要指定并行度,如在本地运行设置setMaster(“local[2]”),相当于启动两个线程,一个给receiver,一个给computer。如果是在集群中运行,必须要求集群中可用core数大于1
4.在Linux端命令行中输入单词
在这里插入图片描述
5.在IDEA控制台中查看结果
在这里插入图片描述
问题:结果每次在Linux段输入的单词次数都被正确的统计出来,但是结果不能累加!如果需要累加需要使用updateStateByKey(func)来更新状态,下面给出一个例子:

object NetworkUpdateStateWordCount {
  /**
    * String : 单词 hello
    * Seq[Int] :单词在当前批次出现的次数
    * Option[Int] : 历史结果
    */
  val updateFunc = (iter: Iterator[(String, Seq[Int], Option[Int])]) => {
    //iter.flatMap(it=>Some(it._2.sum + it._3.getOrElse(0)).map(x=>(it._1,x)))
    iter.flatMap{case(x,y,z)=>Some(y.sum + z.getOrElse(0)).map(m=>(x, m))}
  }

  def main(args: Array[String]) {
    LoggerLevel.setStreamingLogLevels()
    val conf = new SparkConf().setMaster("local[2]").setAppName("NetworkUpdateStateWordCount")
    val ssc = new StreamingContext(conf, Seconds(5))
    //做checkpoint 写入共享存储中
    ssc.checkpoint("c://aaa")
    val lines = ssc.socketTextStream("192.168.10.100", 9999)
    //reduceByKey 结果不累加
    //val result = lines.flatMap(_.split(" ")).map((_, 1)).reduceByKey(_+_)
    //updateStateByKey结果可以累加但是需要传入一个自定义的累加函数:updateFunc
    val results = lines.flatMap(_.split(" ")).map((_,1)).updateStateByKey(updateFunc, new HashPartitioner(ssc.sparkContext.defaultParallelism), true)
    results.print()
    ssc.start()
    ssc.awaitTermination()
  }
}
Spark Streaming整合Kafka完成网站点击流实时统计

在这里插入图片描述
1.安装并配置zk
2.安装并配置Kafka
3.启动zk
4.启动Kafka
5.创建topic

bin/kafka-topics.sh --create --zookeeper namehost:2181,namehost:2181 \
--replication-factor 3 --partitions 3 --topic urlcount

6.编写Spark Streaming应用程序

object UrlCount {
  val updateFunc = (iterator: Iterator[(String, Seq[Int], Option[Int])]) => {
    iterator.flatMap{case(x,y,z)=> Some(y.sum + z.getOrElse(0)).map(n=>(x, n))}
  }

  def main(args: Array[String]) {
    //接收命令行中的参数
    val Array(zkQuorum, groupId, topics, numThreads, hdfs) = args
    //创建SparkConf并设置AppName
    val conf = new SparkConf().setAppName("UrlCount")
    //创建StreamingContext
    val ssc = new StreamingContext(conf, Seconds(2))
    //设置检查点
    ssc.checkpoint(hdfs)
    //设置topic信息
    val topicMap = topics.split(",").map((_, numThreads.toInt)).toMap
    //重Kafka中拉取数据创建DStream
    val lines = KafkaUtils.createStream(ssc, zkQuorum ,groupId, topicMap, StorageLevel.MEMORY_AND_DISK).map(_._2)
    //切分数据,截取用户点击的url
    val urls = lines.map(x=>(x.split(" ")(6), 1))
    //统计URL点击量
    val result = urls.updateStateByKey(updateFunc, new HashPartitioner(ssc.sparkContext.defaultParallelism), true)
    //将结果打印到控制台
    result.print()
    ssc.start()
    ssc.awaitTermination()
  }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值