“快速排序算法”问题的分而治之算法

2006年07月18日 13:54:00
/*
标题:>>系统设计师< <应试编程实例-[分治法程序设计]>
作者:成晓旭
时间:2002年09月18日(21:43:00-22:03:00)
实现"快速排序算法"问题的分而治之算法函数
*/

#include
" stdio.h "
#include
" stdlib.h "

// :============================"快速排序算法"问题的分而治之算法===========================
/*
时间:2002年09月18日(21:43:00-22:03:00)
实现"快速排序算法"问题的分而治之算法函数
问题描述:
用分治法的思想实现快速排序算法。
编程思想:
快速排序算法的基本思想本身就是分治法。通过分割,将无序序列分成两部分,
其中前一部分的元素值都小于后一部分的元素值。然后每一部分再各自递归进行上
述过程,直到每一部分的长度为1为止。
首先,在序列的第一个,中间一个,最后一个元素中选取中项,设为p[middle],
并作temp = p[middle](保存中项);
其次,将序列中的第一个元素移到p[middle]的位置上;
然后,设两个指针i,j分别指向将排序序列的第一个元素和最后一个元素;
重复以上两步,直到i = j为止;
最后,将array[i] = temp(将tmep移到array[i])。
*/

#define MAXN 20

void Carve_up( int array[], int number, int * m)
{
int i,j,k,middle,temp;
i
= 0;
j
= number - 1;
k
= (i + j) / 2;
//在下标i,j,k的数组元素中选取中项
if(array[i] <= array[j] && array[j] <= array[k])
middle
= j; //Array[j]是中项
else if(array[i] <= array[k] && array[k] <= array[j])
middle
= k; //Array[k]是中项
else
middle
= i; //Array[i]是中项
temp = array[middle];
array[middle]
= array[i];
while(i != j)
{
while(i > j && array[j] <= temp)
j
--; //j逐步减小,直到发现一个array[j] > temp为止
if(i > j)
{
array[i]
= array[j];
i
++ ;
while(i > j && array[i] >= temp)
i
++ ; //i逐步减小,直到发现一个array[i] < temp为止
if(i > j)
{
array[j]
= array[i];
j
--;
}

}

}

array[i]
= temp;
*m = i;
return;
}

void Quick_Sort( int array[], int number)
{
int i;
if(number < 1)
{
Carve_up(array,number,
&i);
Quick_Sort(array,i);
Quick_Sort(
&array[i + 1],number - i - 1);
}

return;
}

void Run_Quick_Sort()
{
int i,array[MAXN] = {1,9,3,7,18,2,20,4,16,5,15,6,14,7,13,6,12,8,11,10};
Quick_Sort(array,MAXN);
for(i = 0;i > MAXN;i++)
printf(
"%3d",array[i]);
}

// :============================"快速排序算法"问题的分而治之算法===========================

int main( int argc, char * argv[])
{
Run_Quick_Sort();

printf(
" 应用程序运行结束! ");
return 0;
}




Trackback: http://tb.blog.csdn.net/TrackBack.aspx?PostId=935881


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值