day03回顾

类方法和对象方法

类方法就是C++的静态成员函数啦,静态成员函数不能访问类的成员对象,所以类方法也不能。
原因:静态成员函数不属于任何一个类对象,没有this指针(oc中叫self指针),而非静态成员必须随类对象的产生而产生,所以静态成员函数”看不见”非静态成员,自然也就不能访问了
举一个改错例子

#import <Foundation/Foundation.h>
@interface Person : NSObject
{
    int _age;
}
- (void)test1;
+ (void)test2;
@end

@implementation Person
- (void)test1
{
    NSLog(@"调用了test1方法");
}

+ (void)test2
{
    //[self test1];//类方法不能通过self调用对象方法
    // NSLog(@"调用了test2方法-%d", _age);//类方法中不能访问成员变量
    NSLog(@"调用了test2方法");
}
@end

int main()
{
    Person *p = [Person new];
    //[p test2];//不能通过对象来调用类方法
    [Person test2]

    //[Person test1];//可以通过类名调用对象方法
    [p test1];
}

继承

class A
{
public:
    int a;
};

class B:public A

{
public:

    int a;
    void printfB()
    {
        cout << a;
    }

};

这里如果main函数调用printfB()输出的会是B的a,原因很简单,父类变量被隐藏了,如果想要访问A的a,只能A::a来访问
所以,可以理解以下规定了
(1)编译器从上往下执行,所以在子类前面至少应该要有父类的声明;

(2)OC中不允许子类和父类拥有相同名称的成员变量名;

(3)OC中的子类可以拥有和父类相同名称的方法,在子类调用时,优先去自己的内部寻找,如果没有则一层一层的往上找;(实际上就是c++的虚函数啦,默认写了virtual而已)

关键字super

Super关键字,在子类中重写方法时,可以让调用者跳过这一层而调用父类中的方法。

作用:

(1)直接调用父类中的某一个方法

(2)Super处在对象方法中,那么就会调用父类的对象方法;super处于类方法中,那么就会调用父类的类方法。
注意:不可以在子类的对象方法中调用父类的类方法
例子如下:

#import <Foundation/Foundation.h>

@interface Animal : NSObject
{
    int _age;
    double _weight;
}
- (void)test1;
+ (void)test2;
@end

@implementation Animal
- (void)test1
{
    NSLog(@"test1----");
}
+ (void)test2
{
    NSLog(@"test2----");
}
@end

//父类必须先于子类声明
@interface Dog : Animal
{
     //int _age;//子类中不可以有与父类同名的成员变量
    double _height;
}

@end

@implementation Dog
- (void)test1
{
    NSLog(@"Dog test1----");

    //[super test2];//不可以在子类的对象方法中调用父类的类方法
    [super test1];
}
@end

参考OC面向对象—继承

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值