贝格尔编排法

贝格尔编排法自1985年起广泛用于世界性排球比赛,有效解决了单数队伍参赛时第二轮轮空队伍后续比赛不合理的问题。此方法确保比赛公平进行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

      从1985年起,世界性排球比赛多采用“贝格尔”编排法。其优点是单数队参加时可避免第二轮的轮空队从第四轮起每场都与前一轮的轮空队比赛的不合理现象。

      采用“贝格尔”编排法,编排时如果参赛队为双数时,把参赛队数分一半(参赛队为单数时,最后以“0”表示形成双数),前一半由1号开始,自上而下写在左边;后一半的数自下而上写在右边,然后用横线把相对的号数连接起来。这即是第一轮的比赛。
      第二轮将第一轮右上角的编号(“0”或最大的一个代号数)左角上,第三轮又移到右角上,以此类推。即单数轮次时“0”或最大的一个代号在右上角,双数轮次时则在左上角。
7个队比赛的编排方法
第一轮 第二轮 第三轮 第四轮 第五轮 第六轮 第七轮
1-0 0-5 2-0 0-6 3-0 0-7 4-0
2-7 6-4 3-1 7-5 4-2 1-6 5-3
3-6 7-3 4-7 1-4 5-1 2-5 6-2
4-5 1-2 5-6 2-3 6-7 3-4 7-1
    
内容概要:本文档《opencv高频面试题.docx》涵盖了OpenCV的基础概念、图像处理操作、特征提取与匹配、目标检测与机器学习、实际编程题、性能优化以及进阶问题。首先介绍了OpenCV作为开源计算机视觉库,支持图像/视频处理、目标检测、机器学习等领域,应用于安防、自动驾驶、医学影像、AR/VR等方面。接着详细讲述了图像的存储格式(如Mat类)、通道的概念及其转换方法。在图像处理部分,讲解了图像灰度化、二值化、边缘检测等技术。特征提取方面,对比了Harris和Shi-Tomasi角点检测算,以及SIFT、SURF、ORB的特征提取原理和优缺点。目标检测部分介绍了Haar级联检测原理,并阐述了如何调用深度学习模型进行目标检测。文档还提供了几个实际编程题示例,如读取并显示图像、图像旋转、绘制矩形框并保存等。最后,探讨了性能优化的方法,如使用cv2.UMat(GPU加速)、减少循环等,以及相机标定、光流等进阶问题。 适合人群:对计算机视觉有一定兴趣,具备一定编程基础的学习者或从业者。 使用场景及目标:①帮助学习者掌握OpenCV的基本概念和技术;②为面试准备提供参考;③为实际项目开发提供技术指导。 阅读建议:由于内容涵盖广泛,建议读者根据自身需求有选择地深入学习相关章节,并结合实际编程练习加深理解。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值