股票行情接口,量化策略岗在招聘时都要求清北复交或海外名校背景,那普通人学习量化有啥用处

炒股自动化:申请官方API接口,散户也可以
python炒股自动化(0),申请券商API接口
python炒股自动化(1),量化交易接口区别
Python炒股自动化(2):获取股票实时数据和历史数据
Python炒股自动化(3):分析取回的实时数据和历史数据
Python炒股自动化(4):通过接口向交易所发送订单
Python炒股自动化(5):通过接口查询订单,查询账户资产


量化策略岗位在招聘时确实倾向于清北复交等国内顶尖高校以及海外QS前30大学的毕业生,尤其是那些拥有数学、计算机、统计、物理等专业背景的人才。这种倾向性主要源于量化投资领域对深厚理论知识和复杂算法模型的依赖,以及对编程能力的高要求。这并不意味着普通人学习量化毫无用处。

量化策略的门槛与突破

学历与专业门槛:量化策略岗的招聘标准确实偏高,但这更多是针对行业内的核心研究和开发岗位。这些岗位需要处理大量数据,设计和优化复杂的交易模型,因此对学历和专业背景有较高要求。

实盘业绩:对于没有名校背景的个人,通过展示优秀的实盘交易业绩,可以有效突破学历门槛。例如,如果能够证明自己开发的策略在实际交易中表现优异,如alpha不低于20%,夏普比率在2.5-3.5之间,最大回撤控制在5%之内,那么这些硬核的业绩数据将比学历更具说服力。

普通人学习量化的价值

量化思维的培养:学习量化策略,即使不直接从事量化投资,也能培养出一种基于数据和模型的决策思维。这种思维方式在金融、科技、数据分析等多个领域都有广泛应用,能够提升个人在职场上的竞争力。

技能的通用性:量化策略的开发涉及到编程、数据分析、模型构建等技能,这些技能在其他行业同样具有很高的价值。例如,Python编程能力在数据科学、人工智能、软件开发等领域都是必备技能。

从小白到入门的路径

量化交易的定义:量化交易是使用数学模型而非人脑来决定交易的品种、数量、方向和时机。它强调的是模型的理性决策,而非个人的主观判断。

近在咫尺的量化交易:实际上,量化交易并不一定需要复杂的模型或高频交易。一个简单的例子就是基金定投策略,它通过定期定额投资,平摊投资成本,弱化市场波动的影响,实现稳定的收益。这种策略简单易行,适合普通投资者。

成为量化交易员的步骤

量化交易的养成:培养扎实的交易逻辑和市场理解,这是量化策略的基础。

从Python上手编程:学习Python等编程语言,掌握数据处理和模型构建的基本技能。

走向量化:通过实践,不断优化和测试自己的策略,积累实战经验。

虽然量化策略岗位的招聘标准对学历和专业背景有较高要求,但这并不意味着普通人学习量化毫无用处。通过学习量化思维,掌握相关技能,普通人不仅能够提升自己在职场的竞争力,甚至有可能通过展示优秀的实盘交易业绩,成功进入量化投资领域。量化策略的开发和应用远不止于高大上的模型和算法,简单的策略如基金定投,同样体现了量化交易的核心理念,为普通投资者提供了稳定收益的可能性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

财云量化

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值