炒股自动化:申请官方API接口,散户也可以
python炒股自动化(0),申请券商API接口
python炒股自动化(1),量化交易接口区别
Python炒股自动化(2):获取股票实时数据和历史数据
Python炒股自动化(3):分析取回的实时数据和历史数据
Python炒股自动化(4):通过接口向交易所发送订单
Python炒股自动化(5):通过接口查询订单,查询账户资产
精简请求数据量
在使用通达信作为量化分析数据源时,常常会面临数据量过大的问题。一种有效的策略是只获取必要的数据。如果我们只是针对某几只特定股票进行短期的量化分析,那就没必要获取整个市场所有股票的数据。这样可以减少数据传输量,加快获取速度。对于历史数据的获取,也可以根据分析需求设定合理的时间范围,避免获取过长时间跨度的冗余数据。
频繁地请求数据会给数据源带来较大压力,同时也可能导致自身获取数据的效率低下。可以通过合理安排数据请求的时间间隔来优化。不是每次都立即获取最新数据,而是根据分析的频率,每隔一段时间进行一次批量的数据更新。这样既能保证数据的相对及时性,又能避免过度请求造成的性能损耗。
在接收到从通达信获取的数据后,进行预处理是很重要的一步。首先可以对数据进行清洗,去除其中的异常值和错误数据。一些明显不符合常理的股价数据可能是数据传输错误或者系统故障导致的,将这些数据去除可以避免在后续分析中出现错误结果。可以对数据进行标准化处理,使得不同类型的数据具有可比性,方便后续的量化模型运算。
如果有大量的数据需要处理,可以采用并行处理的方式。现代计算机大多具有多核处理器,利用这一特性,可以将数据分成多个部分,同时在不同的核心上进行处理。在对多只股票的历史数据进行复杂的统计分析时,可以将每只股票的数据处理任务分配到不同的核心上同时进行,这样能够大大缩短数据处理的总时间,提高性能。
不同的存储格式对数据的读写速度有着很大的影响。对于通达信的量化分析数据,根据数据的特点选择合适的存储格式非常关键。如果数据是结构化的且经常需要进行查询操作,那么关系型数据库中的表格形式可能是较好的选择,如MySQL等。而如果数据更注重读写速度,并且结构相对简单,像CSV等文本格式或者专门的二进制存储格式如HDF5可能更适合。
为了避免重复获取和处理相同的数据,可以采用数据缓存策略。在内存中开辟一块缓存区域,当需要再次使用某些数据时,首先检查缓存中是否已经存在。如果存在,直接从缓存中读取数据,而不需要再次从数据源获取或者重新处理。这对于那些经常被重复使用的数据,如一些基础的股票指标数据等,可以大大提高性能。
通过以上在数据获取、处理和存储方面的性能优化策略,可以使通达信在作为量化分析数据源时发挥更好的效能,为量化分析提供更高效、准确的数据支持。
通达信获取数据时如何避免获取过多无用数据?
只获取针对特定分析需求的数据,如特定股票和合理时间范围的数据,避免获取整个市场所有股票长时间跨度的数据。
数据预处理对量化分析有何意义?
数据预处理可去除异常值和错误数据,避免错误结果,还能将数据标准化使其可比,方便后续量化模型运算。
并行处理数据有什么好处?
并行处理可利用多核处理器,将大量数据分成多部分同时处理,能大大缩短多只股票历史数据统计分析的总时间。
如何选择适合通达信量化分析数据的存储格式?
根据数据结构和读写需求选择,若结构化且常查询可选关系型数据库,注重读写速度且结构简单可选CSV或HDF5。
什么是数据缓存策略?
数据缓存策略是在内存开辟缓存区,再次使用数据时先查缓存,若有则直接读取,避免重复获取或处理,提高性能。
频繁请求通达信数据有何弊端?
频繁请求会给数据源带来压力,也会使自身获取数据效率低下,可通过合理安排请求间隔来避免。