学习静态代码审计_第三站:测试昆仑镜Kunlun-M项目


项目介绍和安装测试

项目介绍
根据Readme.md进行安装

  请使用python3.6+运行该工具,已停止维护python2.7环境。

  安装命令:

安装依赖
pip3.8 install -r requirements.txt

配置文件迁移
cp Kunlun_M/settings.py.bak Kunlun_M/settings.py

初始化数据库,默认采用sqlite作为数据库(pip搞了半天)
python3 kunlun.py init initialize

在shell终端启动
python3 kunlun.py console

在这里插入图片描述

扫描测试

  输入scan进入扫描模式,昆仑镜的扫描模式有点类似于MSF。

进入扫描模式:	scan
查看配置信息:	status
设置扫描目录:	set target ./tests/vulnerabilities/
开始扫描:		run

  扫描结果如下,回显界面挺酷!扫描结束后,进入result模式,输入help可以查看操作说明。
在这里插入图片描述


实战扫描

扫描实战

  scan进入扫描模式,set target /Library/WebServer/Documents/设置扫描目录为网站根目录,其中部署了ThinkCMF2.2.3项目文件。

  昆仑镜会尝试识别框架,在面对JavaScript文件时会报“语法错误”。扫描大概用了15分钟,扫出435个漏洞。。

在这里插入图片描述

  昆仑镜会保存扫描结果。关闭shell,新开一个shell,启动昆仑镜输入后输入命令:

查看扫描记录表:	showt
查看扫描结果:	load 2(进入result模式)
查看漏洞:		show vuls(报错)

在这里插入图片描述

报错1

  发生报错:AttributeError: ‘ScanResultTask’ object has no attribute ‘result_id’。
在这里插入图片描述

  ScanResultTask发生属性错误,Github上没有相关Issues,尝试手动排查错误。

  (1)寻找Class的位置:console.py搜索关键字ScanResultTask,找到调用代码from web.index.models import ScanTask, ScanResultTask,找到web.index.models.py文件,128行处是该Class的定义。

  (2)查看Class定义代码:发现result_id被注释掉了,尝试另起一行把注释取消。尝试运行kunlun.py,发生新的报错。
在这里插入图片描述

报错2

  报错信息:解决ScanResultTask的属性报错问题后,运行show vuls发生新报错:django.db.utils.OperationalError: no such column: index_scanresulttask.result_id。(后续补充:已反馈给LoRexxar师傅,目前应该已修复)
在这里插入图片描述

  报错分析:猜测可能是因为Django版本过低,发现不是。根据报错信息来看,与Django的数据库内容有关,没有列index_scanresulttask.result_id,推测应该是传递的接口处出现了问题,比如引用列时发生格式错误。有点烦了奥,重新扫描一遍吧,昆仑镜数据库的存储功能暂时不用。

  尝试1-不可行:更新Django,pip3.8 install --upgrade Django,从1.11.29更新到3.2.5。重启终端shell,打开昆仑镜运行show vuls,仍然报告相同的错误信息。
在这里插入图片描述

更新项目并重新扫描

  昆仑镜项目还在更新中,所以重新下载项目以更新代码,配置工作如下。

更新依赖
pip3.8 install --upgrade -r requirements.txt

配置文件迁移
cp Kunlun_M/settings.py.bak Kunlun_M/settings.py

初始化数据库,默认采用sqlite作为数据库
python3 kunlun.py init initialize

在shell终端启动
python3 kunlun.py console

  扫描项目命令如下:

scan	
set target /Library/WebServer/Documents/	
run

扫描结果分析

  耐心等待扫描结束,感觉shell的回显结果可读性不高,让人找不到重点。打开扫描结果resultDocuments.csv文件,发现有552条可疑记录。

  筛选出30多个中高危的可能漏洞。
首先第1点,先看 analysis 分为两种:参数可控、未验证参数可控。

在这里插入图片描述

漏洞验证

  (1)反序列化-参数可控:文件/simplewind/Core/Library/Think/Auth.class.php。

  代码:unserialize( strtolower(serialize($_REQUEST)) ),位于115行,属于check()函数中的代码,暂不考虑存在漏洞。

  (2)SQLI:文件/simplewind/Core/Library/Think/Model/AdvModel.class.php。

  代码如下,暂时没找到利用方式。

	'SELECT * FROM '.$this->getTableName().'_'.($i+1);
非常抱歉,我之前提供的代码存在错误。在 PyTorch 中,并没有直接提供离散余弦变换(DCT)的函数。对于 DCT 的实现,你可以使用 `torch.rfft` 函数结合 DCT 系数矩阵来进行计算。 下面是一个修正后的示例代码: ```python import torch import torch.nn as nn import torch.optim as optim # 定义离散余弦变换(DCT)系数矩阵 dct_matrix = torch.zeros(256, 256) for i in range(256): for j in range(256): dct_matrix[i, j] = torch.cos((2 * i + 1) * j * 3.14159 / (2 * 256)) # 定义 OMP 算法 def omp(A, y, k): m, n = A.shape x = torch.zeros(n, 1) residual = y.clone() support = [] for _ in range(k): projections = torch.abs(A.t().matmul(residual)) index = torch.argmax(projections) support.append(index) AtA_inv = torch.linalg.inv(A[:, support].t().matmul(A[:, support])) x_new = AtA_inv.matmul(A[:, support].t()).matmul(y) residual = y - A[:, support].matmul(x_new) x[support] = x_new return x # 加载原始图像 image = torch.randn(256, 256) # 压缩感知成像 measurement_matrix = torch.fft.fft(torch.eye(256), dim=0).real compressed = measurement_matrix.matmul(image.flatten().unsqueeze(1)) # 使用 OMP 进行重构 reconstructed = omp(dct_matrix, compressed, k=100) # 计算重构误差 mse = nn.MSELoss() reconstruction_error = mse(image, reconstructed.reshape(image.shape)) print("重构误差:", reconstruction_error.item()) ``` 在这个示例中,我们手动定义了 DCT 系数矩阵 `dct_matrix`,然后使用 `torch.fft.fft` 函数计算测量矩阵,并进行实部提取。接下来的步骤与之前的示例相同。 请注意,这只是一个示例,用于演示如何使用自定义的 DCT 系数矩阵进行压缩感知成像。在实际应用中,你可能需要根据具体的需求进行调整和优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值