Sawtooth
Problem Description
Think about a plane:
● One straight line can divide a plane into two regions.
● Two lines can divide a plane into at most four regions.
● Three lines can divide a plane into at most seven regions.
● And so on...
Now we have some figure constructed with two parallel rays in the same direction, joined by two straight segments. It looks like a character “M”. You are given N such “M”s. What is the maximum number of regions that these “M”s can divide a plane ?
● One straight line can divide a plane into two regions.
● Two lines can divide a plane into at most four regions.
● Three lines can divide a plane into at most seven regions.
● And so on...
Now we have some figure constructed with two parallel rays in the same direction, joined by two straight segments. It looks like a character “M”. You are given N such “M”s. What is the maximum number of regions that these “M”s can divide a plane ?
Input
The first line of the input is T (1 ≤ T ≤ 100000), which stands for the number of test cases you need to solve.
Each case contains one single non-negative integer, indicating number of “M”s. (0 ≤ N ≤ 10 12)
Each case contains one single non-negative integer, indicating number of “M”s. (0 ≤ N ≤ 10 12)
Output
For each test case, print a line “Case #t: ”(without quotes, t means the index of the test case) at the beginning. Then an integer that is the maximum number of regions N the “M” figures can divide.
Sample Input
2 1 2
Sample Output
Case #1: 2 Case #2: 19 题意:M型的线能把平面分成多少部分。 思路1:N条直线能把平面分成1+N(N+1)/2部分。 把M看成四条直线,带入公式1+4N(4N+1)/2得到 N==1时 11,N==2时 37 跟M型正确的时候相差9N 所以推出公式1+4N(4N+1)/2-9N 化简成N(8N-7)+1 思路2:用待定系数法。二维则设ax^2+bx+c=0 三维则设成ax^3+bx^2+cx+d=0 现在用二维求得a,b,c分别为8 -7 1 化成N(8N-7)+1 化成求解,因为N^2在这里可能会超范围。把大数分成两部分前部分为sum/1000000 后部分为sum%1000000 然后进位输出。N(8N-7)+1
#include<iostream> #include<stdio.h> using namespace std; #define mod 1000000 int main() { long long n,x,t=1; cin>>n; while(n--) { cin>>x; long long m=(x<<3)-7; ; long long rm,lm; rm=m/mod; lm=m%mod; rm=rm*x; lm=lm*x+1; rm=rm+lm/mod; lm=lm%mod; printf("Case #%d: ",t); if(rm) printf("%I64d%06I64d\n",rm,lm); else printf("%I64d\n",lm); t++; } return 0; }