数字1的数量

数字1的数量

给定一个十进制正整数N,写下从1开始,到N的所有正数,计算出其中出现所有1的个数。
例如:n = 12,包含了5个1。1,10,12共包含3个1,11包含2个1,总共5个1。
Input
输入N(1 <= N <= 10^9)
Output
输出包含1的个数
Sample Input
12
Sample Output
5
题意:。
思路:(水题思想肯定超时,然后以为会是有规律找了10,100,1000,失败。后来看了博客上大神的想法,按照各个位的1来找,真的超级简单。)一下是大神的思路:

这个题n很大,10^9,所以不能打表。我们就要采用比较高效的方法。

如果我们来考虑每一个数,它一共有多少个1,这样想会很麻烦,我刚开始用排列与组合写了好久,发现到最高位的时候并不怎么好写。后来考虑另一种方法:

我们统计每个位置上可能出现1的数,这样就把问题拆开了。

比如:12。个位上可能出现1的数为1,11(一共2个),十位上可能出现1的个数为10,11,12(一共3个),加一起正好是5。(至于11是否重复的问题,还是再理解一下上面的做法,这个做法只考虑了每一位出现1的数,11在个位上算和在十位上算是不一样的,所以并没有重复)。


那么我们再看一个多位数21905:

个位:它出现1的数为:1 ~ 21901,一共 2190 - 0 + 1 = 2191

十位:它出现1的数为:1x ~ 2181x (x 从0到9)一共:(218 - 0 + 1)*10 = 2190

百位:它出现1的数为:1xx ~ 211xx ,一共:(21 - 0 + 1)* 100 = 2200

千位:它出现1的数为:1xxx ~ 11xxx 和 21000 ~ 21905 ,那么很明显,这个情况就比较特殊了,为什么呢?下面再说,我们先计数,一共:(1 - 0 + 1)*1000 + (905 - 0 + 1)= 2000 + 906 = 2906

万位:它出现1的数为:1xxxx ~ 1xxxx,一共:10000


那么我们求和:2191 + 2190 + 2200 + 2906 + 10000 = 19487(windows计算器得到)

和程序运行结果一样:


然后我们说一下刚刚为什么会有特殊的情况:

很明显,如果当前位是0或者大于1时,那么当前结果只与高位有关,如果是1的话,那么还要把低位的也考虑进去。




AC代码:
#include<stdio.h>
#include<math.h>
int main()
{
    int n,i,t,h;
    __int64 sum;
    scanf("%d",&n);
    t=n;
    i=1;
    sum=0;
    while(t)
    {
        h=t%10;
        if(h==0)
        {
            sum+=n/(i*10)*i;
        }
        else if(h==1)
        {
            sum+=n/(i*10)*i;
            sum+=n%i+1;
        }
        else
        {
            sum+=(n/(i*10)+1)*i;
        }
        i*=10;
        t/=10;
    }
    printf("%I64d\n",sum);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值