数字1的数量
12
5题意:。
这个题n很大,10^9,所以不能打表。我们就要采用比较高效的方法。
如果我们来考虑每一个数,它一共有多少个1,这样想会很麻烦,我刚开始用排列与组合写了好久,发现到最高位的时候并不怎么好写。后来考虑另一种方法:
我们统计每个位置上可能出现1的数,这样就把问题拆开了。
比如:12。个位上可能出现1的数为1,11(一共2个),十位上可能出现1的个数为10,11,12(一共3个),加一起正好是5。(至于11是否重复的问题,还是再理解一下上面的做法,这个做法只考虑了每一位出现1的数,11在个位上算和在十位上算是不一样的,所以并没有重复)。
那么我们再看一个多位数21905:
个位:它出现1的数为:1 ~ 21901,一共 2190 - 0 + 1 = 2191
十位:它出现1的数为:1x ~ 2181x (x 从0到9)一共:(218 - 0 + 1)*10 = 2190
百位:它出现1的数为:1xx ~ 211xx ,一共:(21 - 0 + 1)* 100 = 2200
千位:它出现1的数为:1xxx ~ 11xxx 和 21000 ~ 21905 ,那么很明显,这个情况就比较特殊了,为什么呢?下面再说,我们先计数,一共:(1 - 0 + 1)*1000 + (905 - 0 + 1)= 2000 + 906 = 2906
万位:它出现1的数为:1xxxx ~ 1xxxx,一共:10000
那么我们求和:2191 + 2190 + 2200 + 2906 + 10000 = 19487(windows计算器得到)
和程序运行结果一样:
然后我们说一下刚刚为什么会有特殊的情况:
很明显,如果当前位是0或者大于1时,那么当前结果只与高位有关,如果是1的话,那么还要把低位的也考虑进去。
#include<math.h>
int main()
{
int n,i,t,h;
__int64 sum;
scanf("%d",&n);
t=n;
i=1;
sum=0;
while(t)
{
h=t%10;
if(h==0)
{
sum+=n/(i*10)*i;
}
else if(h==1)
{
sum+=n/(i*10)*i;
sum+=n%i+1;
}
else
{
sum+=(n/(i*10)+1)*i;
}
i*=10;
t/=10;
}
printf("%I64d\n",sum);
return 0;
}