DP动态规划——(hdu 1081)To the Max


http://acm.hdu.edu.cn/showproblem.php?pid=1081



                         To The Max

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 4873    Accepted Submission(s): 2302

Problem Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.

As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2

is in the lower left corner:
9 2
-4 1
-1 8

and has a sum of 15.

Input
The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
 
Output
Output the sum of the maximal sub-rectangle.
 
Sample Input
  
  
4 0 -2 -7 0 
9 2 -6 2 -4 1 -4 1 
-1 8 0 -2
 
Sample Output
  
  
15


又是一道经典的DP问题,初次见到我想大概都会想到暴力,毕竟我也是这么想的,但却是暴力肯定是不能解决问题的。

这道题是求二维子数组之和的最大值,就是在这个正方形里面取一个矩形,使得得到的数最大。

对于二维的求最大值,同样要知道求一维的最大值。(参考:DP动态规划——最大数字子串:http://blog.csdn.net/someday7_toi/article/details/7852448   )。

算法的复杂度为O( n^3 )  .

三层循环:

最外层  i 循环 n-1,表明子矩阵是从第 i 列 开始累加的。(实际上为 i+1 )
第二层 j 循环 n,表明子矩阵是从第 i 列累加到第 j 列
第三层 k 从1 到 N行数 做一维 DP。(这样就保证了求出来的是矩形,即子矩阵)
 
b [ i ][ j ]存的是第j列中前i行的数据之和.求 m 到 n 列的和 即b[k][n]-b[k][m-1].

源代码:

#include<stdio.h>
#include<string.h>
#define M 105

int b[M][M];//  b [ i ][ j ]存的是第j列中前i行的数据之和.求 m 到 n 列的和 即b[k][n]-b[k][m-1]

int main()
{
	int i,j,k,sum,ans,s;
	int n;
	while(~scanf("%d",&n))
	{ 
		memset(b,0,sizeof(b));
		ans=0;
		for(i=1;i<=n;i++)
			for(j=1;j<=n;j++)
			{
				scanf("%d",&k);
				b[i][j]=b[i][j-1]+k;
			} 
		for(i=0;i<n;i++) //代码为了方便 i 从 0 开始
		{
			for(j=i+1;j<=n;j++)
			{	
				sum=0;
				for(k=1;k<=n;k++) //利用一维DP的方法求最大字串
				{
					s=b[k][j]-b[k][i];
					if(sum+s<0)
						{sum=0;}
					else
						sum+=s;
					if(sum>ans)
						ans=sum;
				}		
			}
		}
		printf("%d\n",ans);
	}
	return 0;
}

 

可以参考:

http://www.cnblogs.com/blackcruiser/articles/1786888.html
http://blog.csdn.net/kindlucy/article/details/5675202




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值