LeetCode_53(最大子数组和)

题目描述: 给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组是数组中的一个连续部分。

示例 1:
输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。

示例 2:
输入:nums = [1]
输出:1

示例 3:
输入:nums = [5,4,-1,7,8]
输出:23

提示:
1 <= nums.length <= 105
-104 <= nums[i] <= 104

方法一:分治法(递归)



class Solution {
    /**
     * 过渡方法
     * @param nums 原数组
     * @return  返回最大子段和
     */
    public static int maxSubArray(int[] nums) {
        return MaxSubArray(nums,0,nums.length-1);
    }

    /**
     * 求最大子段和
     * @param nums  待求数组
     * @param left  左指针
     * @param right 右指针
     * @return  最大子段和
     */
    public static int MaxSubArray(int[] nums,int left,int right) {
        int res=0,leftsum,rightsum,midsum,center;
        int sum1,sum2,leftsum1,rightsum1;
        if(left==right){                //递归结束条件
            res=nums[left];             //递归直至子段只剩一个元素,则最大子段和即为该元素
        }else{
            center=(left+right)/2;      //取中间元素将数组分为两段,分而治之
            leftsum=MaxSubArray(nums,left,center);//递归求左边的最大子段和
            rightsum=MaxSubArray(nums,center+1,right);//递归求右边的最大子段和
            sum1=-1230000000;leftsum1=0;//假设sum1为一个很小的数,求左最大子段和
            for (int i = center; i >=left ; i--) {
                leftsum1+=nums[i];
                if(leftsum1>sum1)sum1=leftsum1;
            }
            sum2=-1230000000;rightsum1=0;//假设sum2为一个很小的数,求右最大子段和
            for (int i = center+1; i <=right ; i++) {
                rightsum1+=nums[i];
                if(rightsum1>sum2)sum2=rightsum1;
            }
            midsum=sum1+sum2;
            int s;
            if(leftsum>rightsum)s=leftsum;
            else s=rightsum;
            if(s>midsum)res=s;
            else res=midsum;
        }
        return res;
    }
}

方法二、动态规划

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

♛♕♔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值