Nockchain项目部署教程

Nockchain头矿窗口正在打开,不拼设备,现在部署,马上就要开挖了。

一、项目介绍

Nockchain 是结合了POW和ZKVM的区块链协议。 主要特点:

1)计算+存储+新域名空间三位一体架构,高吞吐量

2)使用Nock模型,可组合性强,能与零知识证明结合使用

3)支持原生CPU挖矿,门槛较低

目前已经获得Delphi Digital领投的500万美元融资。

二、准备工作

机器配置:16核CPU+64G内存+200G磁盘

最好有外网访问,能节省非常多部署安装的时间。需要24小时不间断运行,最好申请海外云服务器,云服务申请可以参考往期的教程。

三、部署教程

1)Window版本教程(Mac、Ubuntu可跳过)

安装wsl

不支持直接在windows的系统上挖矿,需要先使用wsl安装ubuntu的系统,接着,按照ubuntu系统安装。

打开Powershell,安装wsl

wsl.exe -d Ubuntu

2)Ubuntu 版本教程

第一步、安装依赖

apt-get update && apt install sudo -y
sudo apt install -y screen curl iptables build-essential git wget lz4 jq make gcc nano automake autoconf tmux htop nvme-cli libgbm1 pkg-config libssl-dev libleveldb-dev tar clang bsdmainutils ncdu unzip

第二步、安装 rust

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

第三步、下载代码

git clone https://github.com/zorp-corp/nockchain.git

第四步、编译安装核心组件

 cd nockchain
 make install-hoonc
 make build
 make install-nockchain-wallet
 make install-nockchain

第五步、生成助记词和公钥私钥

./target/release/nockchain-wallet keygen

第六步、修改Makefile中的公钥地址

sed -i "s|^export MINING_PUBKEY :=.*$|export MINING_PUBKEY := 你的主公钥|" Makefile

第七步、使用你的公钥启动leader节点

make run-nockchain-leader

第八步、启动follower节点

make run-nockchain-follower

统计数据看版:

NockStats | Advanced Statistics and Analytics Platform

四、总结

项目ZK + PoW 的叙事比较硬核,技术路线非常原生,目前也拿到了融资,有一定的确定性;从挖矿上,不太用拼设备(CPU可挖),难度不高,主要是头矿,竞争压力并不高,有窗口优势,可酌情参与。

五、项目信息一览

项目官网:

Nockchain

代码下载:

https://github.com/zorp-corp/nockchain

挖矿面板:

NockStats | Advanced Statistics and Analytics Platform

### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最新版本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小和加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得最佳实践指导和支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标准。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值