Qlib:面向AI的量化投资平台
作者:肖阳、刘卫青、周东、边江、刘铁岩
单位:微软研究院
邮箱:fXiao.Yang, Weiqing.Liu, Zhou.Dong, Jiang.Bian, Tie-Yan.Liug
摘要
量化投资旨在最大化收益并最小化一系列交易周期内对一组金融工具的风险。近年来,受到AI技术在量化投资方面创新潜力的启发,越来越多的量化研究和实际投资采用AI驱动的工作流程。在丰富量化投资方法的同时,AI技术也为量化投资系统带来了新的挑战。特别是,量化投资的新学习范式要求升级基础设施以适应更新的工作流程;此外,AI技术的数据驱动特性确实表明基础设施需要更强大的性能;此外,在金融场景中应用AI技术解决不同任务时还存在一些独特的挑战。为了应对这些挑战并弥合AI技术与量化投资之间的鸿沟,我们设计并开发了Qlib,旨在实现AI技术在量化投资中的潜力,增强研究,并创造价值。
1 引言
量化投资,作为研究领域中最热门的领域之一,吸引了众多来自学术界和金融行业的杰出人才。在过去的几十年中,通过不断优化量化方法,专业投资者社区总结了一套成熟但不完美的量化研究工作流程。最近ÿ