更优雅的使用线程池-ThreadPoolExecutor

一、使用线程池优势

1、new Thread弊端

  • 每次 new Thread 都要新建对象,性能差
  • 线程无法统一管理,可能新建过多线程导致OOM发生
  • 缺少线程池的一些高级功能,例如定期执行、线程中断等

2、线程池优势

  • 线程可以复用,减少对象创建、消亡开销,提高性能
  • 有效控制最大并发线程数,提高资源利用率,避免多资源竞争,避免阻塞
  • 提供定时执行、定期执行、并发数控制等功能

二、ThreadPoolExecutor

1、核心参数

  • corePoolSize:核心线程数
  • maximumPoolSize:最大线程数
  • workQueue:阻塞队列,存储等待执行的任务
  • keepAliveTime:线程没有任务执行时保持存活时间
  • unit:keepAliveTime的时间单位
  • threadFactory:线程工厂
  • rejectHandler:拒绝策略,当阻塞队列满了时,没有空闲的线程池,此时需要一种策略处理当前任务

2、rejectHandler拒绝策略

  • ThreadPoolExecutor.AbortPolicy:丢弃任务并抛出RejectedExecutionException异常,默认策略
  • ThreadPoolExecutor.DiscardPolicy:丢弃任务不抛出异常
  • ThreadPoolExecutor.DiscardOldestPolicy:丢弃队列最前面的任务,然后重新尝试执行任务(重复此过程)。
  • ThreadPoolExecutor.CallerRunsPolicy:由调用线程处理该任务

3、ThreadPoolExecutor主要方法

  • execute():提交任务,交给线程池处理
  • submit():提交任务,能够返回结果,相当于execute + future
  • shutdown():关闭线程池,等待任务都执行完
  • shutdownNow():关闭线程池,不等待任务执行完

4、ThreadPoolExecutor线程池使用示例

比如多线程执行自增操作:

public class SafeDemo {

    private static int COREPOOLSIZE = 5;
    private static int MAXIMUMPOOLSIZE = 200;
    private static long KEEPALIVETIME = 0L;
    private static int QUESIZE = 100;
    
    private static ThreadPoolExecutor.DiscardOldestPolicy rejectHandler = new ThreadPoolExecutor.DiscardOldestPolicy();
    // 尽量不使用Executors创建线程池,Executors有可能导致OOM发生
    public static ThreadPoolExecutor poolExecutor = new ThreadPoolExecutor(COREPOOLSIZE, MAXIMUMPOOLSIZE, KEEPALIVETIME, TimeUnit.SECONDS, new LinkedBlockingDeque<>(QUESIZE), Thread::new, rejectHandler);
    public static void main(String[] args) throws InterruptedException {
        AtomicInteger cnt = new AtomicInteger();
        int forSize = 1000;
        CountDownLatch countDownLatch = new CountDownLatch(forSize);
        for (int i = 0; i < forSize; i++) {
            Runnable runnable = () -> {
                cnt.incrementAndGet();
                countDownLatch.countDown();
            };
            poolExecutor.execute(runnable);
        }
        countDownLatch.await();
        System.out.println(cnt.get());
    }
}

三、线程池大小合理配置

假设CPU数量为n,那么当处理CPU密集型任务时,线程池大小可设置参考值为n + 1;

当处理IO密集型任务时,参考值可为2 * n;

具体情况需根据实际情况调整,比如设置完大小后,观察任务执行情况和主机资源使用情况等进行调整,保证线程池大小更加合理。

别来无恙!
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值