机器学习 Machine Learning中一元线性回归的学习笔记~

1 前言

今天在做 Machine Learning的作业~

2 一元线性回归

2.1 loss函数

带有规范化的loss函数:
J ( θ ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 + λ 2 m ∑ j = 1 n ( θ j ) 2 J(\theta)= \frac{1}{2m} \sum_{i=1}^{m} \left (h_\theta\left ( x^{\left ( i\right )}\right )-y^{\left ( i\right )} \right )^2 + \frac{\lambda}{2m}\sum_{j=1}^{n}\left (\theta_j \right )^2 J(θ)=2m1i=1m(hθ(x(i))y(i))2+2mλj=1n(θj)2

2.1 梯度下降的迭代公式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值