本人刚刚开始入门TensorFlow,来谈一下自己的一点理解,不对的地方还请大家能指正出来,共同进步,TensorFlow是一个机器学习的框架,也是python的一个库,就像numpy之类,我们可以调用库里面的很多接口(API)来实现各种功能,尤其是针对机器学习深度学习。TensorFlow最重要的是构建图和计算图,而Tensor(张量)可以理解为矩阵(一维,二维......),图中每个节点的计算结果即为Tensor。看例子:
import tensorflow as tf
print("hello tensorflow")
const = tf.constant(2.0,name = 'const')
b = tf.Variable(2.0,name = 'b')
c = tf.Variable(1.0,dtype = tf.float32,name = 'c')
d = tf.add(b,c,name = 'd')
e = tf.add(c,const,name = 'e')
a = tf.multiply(d,e,name = 'a')
init_opt = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init_opt)
a_out = sess.run(a)
print('Variable a is{}'.format(a_out))
上面的例子很简单,constant是创建一个常亮,第一个参数是常量值,后面的参数依次是修饰部分,如dtype是数据类型,name是变量的名字等,add、multiply是操作运算,global_variables_initializer()是初始化变量,run则是执行运算,最后打印结果hello tensorflow
Variable a is9.0