螺旋矩阵、螺旋队列算法

问题描述

螺旋矩阵是一个nxn的方阵,其中元素为自然数,但像螺旋方向一样递增。举例如下:

 若n = 3,螺旋矩阵为:

1   2   3
8   9   4
7   6   5

若n = 4,螺旋矩阵为:

 1   2   3   4
12  13  14   5
11  16  15   6
10   9   8   7
若n = 5,螺旋矩阵是:
 1   2   3   4   5
16  17  18  19   6
15  24  25  20   7
14  23  22  21   8
13  12  11  10   9

那么如何打印这样的矩阵呢?

解析

当然它的规律很简单,直接的方法就是先申请一个矩阵,然后按螺旋方向填入相应的元素,填充完毕后再打印出来。它的时间按复杂为O(n2),已经是最优的(为什么?)。空间复杂度也为O(n2)。似乎已经很好了。 但是还不够好。

按照矩阵规律填充元素时,我们是随机访问矩阵元素的(如果可以按顺序访问,根本不用先存起来再打印)。随机访问内存,效率当然不高。所以即使时间复杂度已为最优,但那只是理论上的最优,在实践中表现并不一定就好。

假如能根据行列号直接计算出对应的矩阵元素就好了。当n给定后,这个矩阵就已经唯一确定了,那么每一个元素也是确定的。也就是说,每一个位置放什么元素仅仅取决于n。因此我们可以找到一个函数element(i, j),将行号i和列号j映射成对应这个行列号的元素。当然这个函数肯定不是一个简单的函数,不是一眼就可以看出来的,但也并不是不可能。

现在我们就来考查一下这个矩阵有什么特点。注意观察一下螺旋矩阵的最外层,它的左上角的元素是最小的,然后沿顺时针方向递增,就如同一个环一样(比如n为4时,1, 2, ..., 12就是最外面一层环)。再注意一下里面一层,也是一样,顺时针方向递增的一个环(比如n为4时,13, 14, 15, 16就是里面一层环)。以此类推,环里面还有一层环(n为4时有2层环,n为5时有3层环,最里面一层只有一个元素25),实际上是一个圆环套圆环结构。每一圆环最关键的元素就是左上角的那一个元素。只要知道了这个元素,再加上这个正方形环的边长就可以计算出剩下的元素。设左上角元素为a,边长为l(ell),也就是边上有几个元素,并假设左上角的行号和列号均为0,其它元素的行号和列号都以它作参考,计算方法如下所示:

1. 若i == 0,element(i, j) = a + j;

2. 否则若j == 0,element(i, j) = a + 4(l-4) - (i-1) - 1;

3. 否则若i == l-1,element(i, j) = a + 4(l-4) - (l-2) - 1 - j;

4. 否则element(i, j) = a + l - 1 + i;

螺旋矩阵代码:

//螺旋矩阵

#include<iostream>
using namespace std;

int a[10][10];

void Fun(int n)
{
	int m=1;
	int i,j;
	for(i =0;i<n/2;i++){
		for(j=0;j<n-i;j++){
			if(a[i][j] ==0)
				a[i][j] = m++;
		}
		for(j=i+1;j<n-i;j++){
			if(a[j][n-1-i] ==0)
				a[j][n-1-i] = m++;
		}
		for(j=n-i-1;j>i;j--){
			if(a[n-i-1][j] ==0)
				a[n-i-1][j] = m++;
		}
		for(j=n-i-1;j>i;j--){
			if(a[j][i] ==0)
				a[j][i] = m++;
		}
	}
	if(n%2==1)
		a[n/2][n/2]=m;
}

int main(void)
{
	int n,i;
	cout<<"请输入螺旋矩阵维数: "<< endl;
	cin>>n;
	cout<<"显示螺旋矩阵数值: "<< endl;
	for(int i=0;i<n;i++){
		for(int j=0;j<n;j++){
			a[i][j]=0;
		}
	}
	Fun(n);
	for(i=0;i<n;i++){
		for( int j=0;j<n;j++){
			cout<<a[i][j]<< "\t";
		}
	cout<<endl;
	}
}

螺旋队列

问题描述: 设1的坐标是(0,0),x方向向右为正,y方向向下为正,例如,7的坐标为(-1,-1),2的坐标为(1,0)。编程实现输入任意一点坐标(x,y),输出所对应的数字.

螺旋队列代码:

// 螺旋队列.cpp : Defines the entry point for the console application.
//

#include "stdafx.h"
#include <iostream>
#define max(a,b) ((a)<(b)?(b):(a))
#define abs(a) ((a)>0?(a):-(a))

using namespace std;

int foo(int x,int y)
{
	int t = max(abs(x),abs(y));
	int u = t+t;
	int v = u-1;
	v= v*v+u;
	if(x == -t)
		v+=u+t-y;
	else if(y==-t)
		v+=3*u+x-t;
	else if(y ==t)
		v+= t-x;
	else
		v+=y-t;
	return v;
}


int _tmain(int argc, _TCHAR* argv[])
{
	int x ,y;
	int N;
	cout<<"请输入螺旋队列数字: "<<endl;
	cin>>N;
	cout<<"显示螺旋队列数值: "<<endl;
	for(y=-N;y<=N;y++)
	{
		for(x=-N;x<=N;x++)
			cout<<"\t"<<foo(x,y);
		cout<<endl;
	}
	while(scanf("%d%d",&x,&y)==2)
		//printf("%d\n",foo(x,y));
	    cout<<"\t"<<foo(x,y);
	return 0;
}

=======================================================

转载请注明出处http://blog.csdn.net/utimes/article/details/8348243

=======================================================

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值