Docker tensorflow serving GPU libcuda.so.1问题

本文提供了解决在Docker中运行TensorFlow GPU服务时遇到的libcuda.so.1缺失错误的方法。通过安装nvidia-docker并使用--runtime=nvidia参数,或手动配置libcuda.so.1的环境变量,可以成功启动GPU容器。
摘要由CSDN通过智能技术生成

在docker中创建一个tensorflow-serving:latest-gpu容器时,报出如下BUG:

tensorflow_model_server: error while loading shared libraries: libcuda.so.1: 
cannot open shared object file: No such file or directory

解决方法1:

安装nvidia-docker,教程见:https://github.com/NVIDIA/nvidia-docker
创建容器时,添加参数:–runtime=nvidia
问题解决!
安装nvidia-docker过程中可能遇到如下题:/opt/anaconda3/envs/py36/lib/liblzma.so.5: version `XZ_5.1.2alpha’ not found (required by /lib64/librpmio.so.3)
解决方法:
下载liblzma.so.5.2.2文件(https://github.com/u-root/midori/tree/master/lib/x86_64-linux-gnu)复制到/opt/anaconda3/envs/py36/lib目录下
执行软连接:sudo ln -s -f liblzma.so.5.2.2 liblzma.so.5
问题解决,继续执行安装过程。

解决方法2:

重新拉取镜像:docker pull tensorflow/serving:latest-devel-gpu
创建容器:docker run -it tensorflow/serving:lates

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sophia_xw

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值