BI
文章平均质量分 73
陋室愚人
工作:BI;
爱好:古筝(中国音乐学院5级水平),数据挖掘,信息可视化,财经动态,运动健身,书法,绘画,写作;
提升自己,影响他人,达到身,心,灵,工作与生活的平衡。
般若心自在,动若体自然。
展开
-
BI的系统构成
在当前的全球化竞争日益激烈的经济环境下,企业的生存发展,关键在于它是否能够对各种不同的用户需求做出快速的反应及正确的决策并提供优质的产品和服务。商业智能(Business Intelligence, BI)系统是指运用数据仓库,联机分析和数据挖掘技术来处理和分析商业数据,针对不同的领域提供不同的应用解决方案,协助用户解决商务活动中的复杂问题,从而帮助决策者面对商务环境的快速变化而做出敏捷反应和合理转载 2013-01-25 10:33:32 · 1695 阅读 · 0 评论 -
BI构成意义
一、商业智能的意义—决策支持系统 管理大师彼得•德鲁克(Peter Drucker)曾发出概叹:迄今为止,我们的信息技术产生还仅仅是数据,而不是信息、更不是知识!怎样从商务流程的数据纪录中提取对决策过程有参考价值 的信息,从而实现从数据到信息、从信息到知识、从知识到利润的转化?这个要求,在西方发达国家先后进入了后工业社会之后,变得更加迫切。企业的规模越来越 庞大、组织越来越复杂,市场更加多转载 2013-01-25 10:30:26 · 2508 阅读 · 0 评论 -
Hadoop
随着大数据的盛行,Hadoop也流行起来。包括一线公司(hadoop就是公司主要产品)如cloudera, hortonworks, mapr, teradata, greenplum, 二线的(使用hadoop):apple, expedia,comScore. 当然还有很多公司facebook,twitter, baidu, 感觉这块还是机会挺多的,我就把我知道的一些给大家分享一下转载 2013-02-04 13:57:54 · 1733 阅读 · 0 评论 -
Greenplum相关知识
一般地,greenplum的每个segment节点对应一个网口NIC,一个物理CPU,一个磁盘控制器,以便同机器的多个segment之间互不影响。greenplum的备份,提供了gp_dump做并行备份,master和segment节点同时执行备份操作,另外gp_crondump会定期执行备份操作;支持PostgreSQL的pg_dump和pg_dumpall命令,但是其将所有的数据写转载 2013-02-04 14:01:04 · 1826 阅读 · 0 评论 -
The visual Display of information
图表设计的目的既是让读者能快速地获取真实而丰富的信息。 对于图表设计来说,任何与数据无关的装饰都是多余的,甚至任何与数据无关的笔墨(ink)都是多余的。换句话说,设计师应该最大化地发挥数据信息本身的作用,视觉层次,框架,美感都应该通过数据本身来实现。对于图表设计好坏的重要指标有: 1)Lie Factor 畸变因子,即图形在表达数据变化时的失真程度翻译 2013-03-21 16:48:00 · 1050 阅读 · 0 评论 -
虚拟数据中心
虚拟化的数据中心可以分为三个层次:1、网络的虚拟化: 比如网络设备的一虚多,比如Cisco的VDC、华为的VS技术;多虚一,比如Cisco的VSS/VDC,华为的CSS、华三的IRF等技术,还有网络的纵向虚拟化,比如Cisco的FEX技术。2、存储的虚拟化: 就是把独立的存储资源合并起来,形成一个资源池,共同对外提供服务。翻译 2013-04-23 15:48:48 · 2857 阅读 · 0 评论 -
商业分析的思想指导自己,商业智能的手段管理自己
商业智能 商业分析 它们是做什么?基础查询和报告数据库OLAP,切片,向下钻取交互界面表现:仪表盘,得分卡,图表,图形,警报等应用数学和统计分析技巧识别关键数据变量之间的关系解密隐藏在数据中的规律翻译 2013-04-25 21:08:48 · 1290 阅读 · 0 评论 -
解读数据
一提到“数据”,可能经常会想到“数字”、“图表”、“模型”、“方程”等容易让人怯步的词语。其实“数据”的真正意义,是躲在背后的那些“人”。在营销学中,市场的根本在于需求,需求由人而生。因此,我们不应该就数字而数字,就算法而算法,应该自始自终关注“人”,市场研究则更是如此。有人也许会说,“人”可不好说,有时说谎,有时偏私,真真假假。但,不是有种更简单的想法吗?我们自己本身就是“人”。转载 2013-04-25 22:43:05 · 1834 阅读 · 0 评论 -
数据可视化原则&步骤
可视化数据”的七个步骤: 1.获取数据,无所谓是来自文件、磁盘亦或是网络等; 2.分析数据结构,分类排序; 3.过滤,去掉所有不感兴趣的数据; 4.综合使用数学、统计、模式识别等等方法来挖掘出一些特征数据; 5.选择诸如棒图、列表、树等的可视化模型来描绘数据; 6.精炼基本表示法,使数据描绘的更清楚,更具视觉效果; 7.添加一些用于控制翻译 2013-04-29 21:45:38 · 2847 阅读 · 0 评论