BI构成意义

一、商业智能的意义—决策支持系统  

管理大师彼得•德鲁克(Peter Drucker)曾发出概叹:迄今为止,我们的信息技术产生还仅仅是数据,而不是信息、更不是知识!怎样从商务流程的数据纪录中提取对决策过程有参考价值 的信息,从而实现从数据到信息、从信息到知识、从知识到利润的转化?这个要求,在西方发达国家先后进入了后工业社会之后,变得更加迫切。企业的规模越来越 庞大、组织越来越复杂,市场更加多变、竞争更加激烈,如何做出正确、明智、及时的大小决策,对组织的兴衰存亡影响越来越大,一步走错,可能满盘皆输。

二、商业智能—数据仓库  

决策支持系统面临的“瓶颈式”难题,是如何有机的聚集整合多个不同运营信息系统产生的数据。数据仓库是商务智能的依托,是对海量数据进行分析的核心物理构架。它可以形象的理解为一种语义格式一致的多源数据存储中心,数据源可以是来自多种不同平台的系统,如企业内部的客户关系管理系统、供应链管理系统、企业资源规划系统,也可以是企业外部的系统和零散数据。这些不同形式、分布在不同地方 的数据,将以统一定义的格式从各个系统提取出来,再通过清洗、转换、集成,最后百流如海,加载进入数据仓库。



三、商务智能—联机分析

联机分析也称多维分析,本意是把分立的 数据库“ 相联”,进行多维度的分析。“维”是联机分析的核心概念,指的是人们观察数据的特定角度, 举个例子,跨国零售商沃尔马如果要分析自己的销售量,它可以按地区国别分析、时间序列分析、商品门类分析;也可以按供货渠道分析、客户群类分析,这些不同的分析角度,就叫“维度”。多维分析技术预先为用户创建多维的数据立方体(Cube),一旦多维立方体建模完成,用户可以快速地从各个分析维度获取数据,也可以动态的在各个维度之间 来回切换或者进行多维度的综合分析。通过从不同的维度、不同的粒度、立体地对数据进行分析,从而获得有严密推证关系的信息。

四、商务智能—数据挖掘

数据挖掘是指通过分析大量的数据来揭示数据之间隐藏的关系、模式和趋势,从而为决策者提供新的知识。之所以称之为“挖掘”,是比喻在海量数据中寻找知识,就象从沙里淘金一样困难。这种点“数”成金的能力,是商务智能真正的“灵魂”和魅力所在。
如果说联机分析是对数据的一种透视性的探测,数据挖掘则是利用计算机算法对数据进行挖山凿矿式的开采。它的主要目的,一是要发现潜藏在数据表面以下的知 识,二是对未来进行预测,前者称为描述性分析,后者称为预测性分析。沃尔玛发现的啤酒和尿布的销售关联性就是一种典型的描述性分析;考察所有历史数据,以特定的算法对下个月啤酒的销售量进行估计以确定进货量,则是一种预测性分析。

五、商务智能—数据的可视化

所谓信息可视化(Information Visualization)是指以图形、图像、动画等更为生动、易为理解的方式来展现和诠释数据之间的复杂关系和发展趋势,以便更好地利用数据分析结果。传统意义上的报表,格式单一,枯燥乏味,令人没有阅读的欲望。信息可视化主张,人的创造力不仅取决于逻辑思维,而且还取决于形象思维。数据如果能变成图像,就能在逻辑思维的基础上进一步激发人的形象思维,帮助用户理解数据之间隐藏的规律,为决策提供最优的支持。信息可视化的专家因此宣布,他们要让数据 “动”起来、“舞”起来!让数据变得“性感”!
### TCN与BiLSTM结合的神经网络架构 TCN-BiLSTM是一种混合架构,旨在充分利用两种不同类型的神经网络各自的优势来处理复杂的多特征时间序列数据[^3]。 #### 架构组成 - **TCN (Temporal Convolutional Network)**: 这部分主要由一维卷积层构成。TCN通过堆叠多个因果卷积层(casual convolution layers),并引入膨胀机制(dilation mechanism)扩展感受野(receptive field),从而有效捕获输入信号的时间依赖性和局部特性。此外,残差连接(residual connections)也被应用于缓解梯度消失问题以及加速训练过程[^4]。 ```python import torch.nn as nn class TemporalConvNet(nn.Module): def __init__(self, num_inputs, num_channels, kernel_size=2, dropout=0.2): super(TemporalConvNet, self).__init__() layers = [] num_levels = len(num_channels) for i in range(num_levels): dilation_size = 2 ** i padding = (kernel_size - 1) * dilation_size conv_layer = nn.Conv1d( num_inputs if i == 0 else num_channels[i-1], num_channels[i], kernel_size, stride=1, padding=padding, dilation=dilation_size ) relu_activation = nn.ReLU() drop_out = nn.Dropout(dropout) residual_connection = nn.Identity() if not i or num_channels[i-1]==num_channels[i] \ else nn.Conv1d(num_channels[i-1], num_channels[i], 1) block = nn.Sequential(conv_layer, relu_activation, drop_out, residual_connection) layers.append(block) tcn_blocks = nn.ModuleList(layers) # Define the final output layer to match desired dimensions. self.network = nn.Sequential(*tcn_blocks) def forward(self, x): return self.network(x) ``` - **BiLSTM (Bidirectional Long Short-Term Memory)**: BiLSTM是由前向LSTM(forward LSTM)和后向LSTM(backward LSTM)组成的双向循环神经网络。它可以从两个方向上遍历整个序列,在每一个时刻都考虑到了之前所有的历史信息以及之后可能出现的信息,因此非常适合于那些需要同时关注上下文环境的任务。当与TCN配合工作时,BiLSTM接收来自TCN提取到的空间-时间特征作为输入,并进一步对其进行编码以完成最终的任务目标,比如分类或预测。 ```python from torch import nn class BILSTMLayer(nn.Module): def __init__(self, input_dim, hidden_dim, n_layers, bidirectional=True, dropout=0.5): super(BILSTMLayer, self).__init__() self.lstm = nn.LSTM(input_dim, hidden_dim, n_layers, batch_first=True, bidirectional=bidirectional, dropout=(dropout if n_layers>1 else 0)) def forward(self, x): lstm_output, _ = self.lstm(x) return lstm_output ``` 整体来看,TCN负责初步的数据预处理阶段——即从原始时间序列中抽取出有意义的时空特征;而BiLSTM则承担起后续更加深入的学习任务,通过对上述特征进行二次加工达到更好的性能表现。 --- ### 应用场景 该种结构特别适用于具有明显周期性变化规律且存在较长的记忆需求的实际案例之中: - **金融领域**: 对股票价格走势、汇率波动等经济指标的变化趋势做出精准预报; - **医疗健康监测**: 实现对人体生理参数(心率、血压等)长时间连续记录下的异常检测预警功能; - **智能交通管理**: 预测城市道路网内车辆流量分布情况辅助制定合理的调度方案; - **能源消耗分析**: 基于电力负荷曲线图评估用电高峰期时段以便合理安排发电计划。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值