一、商业智能的意义—决策支持系统
管理大师彼得•德鲁克(Peter Drucker)曾发出概叹:迄今为止,我们的信息技术产生还仅仅是数据,而不是信息、更不是知识!怎样从商务流程的数据纪录中提取对决策过程有参考价值 的信息,从而实现从数据到信息、从信息到知识、从知识到利润的转化?这个要求,在西方发达国家先后进入了后工业社会之后,变得更加迫切。企业的规模越来越 庞大、组织越来越复杂,市场更加多变、竞争更加激烈,如何做出正确、明智、及时的大小决策,对组织的兴衰存亡影响越来越大,一步走错,可能满盘皆输。
二、商业智能—数据仓库
三、商务智能—联机分析
联机分析也称多维分析,本意是把分立的 数据库“ 相联”,进行多维度的分析。“维”是联机分析的核心概念,指的是人们观察数据的特定角度, 举个例子,跨国零售商沃尔马如果要分析自己的销售量,它可以按地区国别分析、时间序列分析、商品门类分析;也可以按供货渠道分析、客户群类分析,这些不同的分析角度,就叫“维度”。多维分析技术预先为用户创建多维的数据立方体(Cube),一旦多维立方体建模完成,用户可以快速地从各个分析维度获取数据,也可以动态的在各个维度之间 来回切换或者进行多维度的综合分析。通过从不同的维度、不同的粒度、立体地对数据进行分析,从而获得有严密推证关系的信息。
四、商务智能—数据挖掘
数据挖掘是指通过分析大量的数据来揭示数据之间隐藏的关系、模式和趋势,从而为决策者提供新的知识。之所以称之为“挖掘”,是比喻在海量数据中寻找知识,就象从沙里淘金一样困难。这种点“数”成金的能力,是商务智能真正的“灵魂”和魅力所在。
如果说联机分析是对数据的一种透视性的探测,数据挖掘则是利用计算机算法对数据进行挖山凿矿式的开采。它的主要目的,一是要发现潜藏在数据表面以下的知 识,二是对未来进行预测,前者称为描述性分析,后者称为预测性分析。沃尔玛发现的啤酒和尿布的销售关联性就是一种典型的描述性分析;考察所有历史数据,以特定的算法对下个月啤酒的销售量进行估计以确定进货量,则是一种预测性分析。
五、商务智能—数据的可视化
所谓信息可视化(Information Visualization)是指以图形、图像、动画等更为生动、易为理解的方式来展现和诠释数据之间的复杂关系和发展趋势,以便更好地利用数据分析结果。传统意义上的报表,格式单一,枯燥乏味,令人没有阅读的欲望。信息可视化主张,人的创造力不仅取决于逻辑思维,而且还取决于形象思维。数据如果能变成图像,就能在逻辑思维的基础上进一步激发人的形象思维,帮助用户理解数据之间隐藏的规律,为决策提供最优的支持。信息可视化的专家因此宣布,他们要让数据 “动”起来、“舞”起来!让数据变得“性感”!
管理大师彼得•德鲁克(Peter Drucker)曾发出概叹:迄今为止,我们的信息技术产生还仅仅是数据,而不是信息、更不是知识!怎样从商务流程的数据纪录中提取对决策过程有参考价值 的信息,从而实现从数据到信息、从信息到知识、从知识到利润的转化?这个要求,在西方发达国家先后进入了后工业社会之后,变得更加迫切。企业的规模越来越 庞大、组织越来越复杂,市场更加多变、竞争更加激烈,如何做出正确、明智、及时的大小决策,对组织的兴衰存亡影响越来越大,一步走错,可能满盘皆输。
二、商业智能—数据仓库
决策支持系统面临的“瓶颈式”难题,是如何有机的聚集整合多个不同运营信息系统产生的数据。数据仓库是商务智能的依托,是对海量数据进行分析的核心物理构架。它可以形象的理解为一种语义格式一致的多源数据存储中心,数据源可以是来自多种不同平台的系统,如企业内部的客户关系管理系统、供应链管理系统、企业资源规划系统,也可以是企业外部的系统和零散数据。这些不同形式、分布在不同地方 的数据,将以统一定义的格式从各个系统提取出来,再通过清洗、转换、集成,最后百流如海,加载进入数据仓库。
三、商务智能—联机分析
联机分析也称多维分析,本意是把分立的 数据库“ 相联”,进行多维度的分析。“维”是联机分析的核心概念,指的是人们观察数据的特定角度, 举个例子,跨国零售商沃尔马如果要分析自己的销售量,它可以按地区国别分析、时间序列分析、商品门类分析;也可以按供货渠道分析、客户群类分析,这些不同的分析角度,就叫“维度”。多维分析技术预先为用户创建多维的数据立方体(Cube),一旦多维立方体建模完成,用户可以快速地从各个分析维度获取数据,也可以动态的在各个维度之间 来回切换或者进行多维度的综合分析。通过从不同的维度、不同的粒度、立体地对数据进行分析,从而获得有严密推证关系的信息。
四、商务智能—数据挖掘
数据挖掘是指通过分析大量的数据来揭示数据之间隐藏的关系、模式和趋势,从而为决策者提供新的知识。之所以称之为“挖掘”,是比喻在海量数据中寻找知识,就象从沙里淘金一样困难。这种点“数”成金的能力,是商务智能真正的“灵魂”和魅力所在。
如果说联机分析是对数据的一种透视性的探测,数据挖掘则是利用计算机算法对数据进行挖山凿矿式的开采。它的主要目的,一是要发现潜藏在数据表面以下的知 识,二是对未来进行预测,前者称为描述性分析,后者称为预测性分析。沃尔玛发现的啤酒和尿布的销售关联性就是一种典型的描述性分析;考察所有历史数据,以特定的算法对下个月啤酒的销售量进行估计以确定进货量,则是一种预测性分析。
五、商务智能—数据的可视化
所谓信息可视化(Information Visualization)是指以图形、图像、动画等更为生动、易为理解的方式来展现和诠释数据之间的复杂关系和发展趋势,以便更好地利用数据分析结果。传统意义上的报表,格式单一,枯燥乏味,令人没有阅读的欲望。信息可视化主张,人的创造力不仅取决于逻辑思维,而且还取决于形象思维。数据如果能变成图像,就能在逻辑思维的基础上进一步激发人的形象思维,帮助用户理解数据之间隐藏的规律,为决策提供最优的支持。信息可视化的专家因此宣布,他们要让数据 “动”起来、“舞”起来!让数据变得“性感”!