一阶矩(First Moment)
定义:一阶矩通常是指随机变量的均值(或期望值)。
公式:
μ = E ( X ) = ∫ − ∞ ∞ x f ( x ) d x \mu = E(X) = \int_{-\infty}^{\infty} x f(x) \, dx μ=E(X)=∫−∞∞xf(x)dx
解释:均值是数据的“中心位置”或平衡点,它描述了随机变量的平均取值情况。
二阶矩&
统计学中的矩(Moments)
于 2025-01-11 02:40:01 首次发布
一阶矩(First Moment)
定义:一阶矩通常是指随机变量的均值(或期望值)。
公式:
μ = E ( X ) = ∫ − ∞ ∞ x f ( x ) d x \mu = E(X) = \int_{-\infty}^{\infty} x f(x) \, dx μ=E(X)=∫−∞∞xf(x)dx
解释:均值是数据的“中心位置”或平衡点,它描述了随机变量的平均取值情况。
二阶矩&