数位dp训练笔记

数位dp基本上是处理位数相关的问题,不过也不一定

大部分题目存在一定套路,但是有一些也不好想

其dp状态的设置大致是由枚举的位数,以及每一位的状态(是否前导0,是否顶到上界),以及一些依题目而定的性质

时间复杂度基本上就是dp枚举的状态数

没了

[AHOI2009]同类分布

大意:

给出两个数a,b,求出[a,b]中各位数字之和能整除原数的数的个数。

a,b<=1e18

思路:

考虑dp状态dp[i][j][k]表示枚举到前i位,前i位数字的和是j,前i位组成的数字是k

这是一个比较niave的想法,但是数据范围不支持我们这样处理第三维。

考虑到最后只要求整除,所以可以考虑用k%j来代替k

但是这样还涉及到一个问题,就是如果j是不断变化的,就很难实现状态转移

所以我们可以在外层枚举j,然后dfs的时候就保持j不变

就好了

由于这里是考虑每一位数字的和,所以我们不用考虑前导0的问题

code

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define endl '\n'
const ll N=1e5+10;
ll mod;
ll n,m;
ll a[20];
ll cnt=0;
ll dp[20][200][200];
ll dfs(ll x,ll sum,ll rel,ll op)
{
	if(x==0) return sum==0&&rel==0;
	if(!op&&dp[x][rel][sum]!=-1) return dp[x][rel][sum]; 
	ll lim=op?a[x]:9;
	ll tot=0;
	for(int i=0;i<=lim&&i<=sum;++i)
	{	
		tot+=dfs(x-1,sum-i,(rel*10%mod+i)%mod,op&&i==lim);	
	}
	if(!op) dp[x][rel][sum]=tot;
	return tot;
}
ll f(ll x)
{
	cnt=0;
	while(x)
	{
		a[++cnt]=x%10;
		x/=10;
	}
	ll det=0;
	for(int i=1;i<=9*cnt;++i)
	{
		mod=i;
		memset(dp,-1,sizeof dp);
		det+=dfs(cnt,i,0,1);
	}
	return det;
}
void solve()
{
	
	cin>>n>>m;
	cout<<f(m)-f(n-1)<<endl;
}
int main()
{
	ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
//	ll t;cin>>t;while(t--)
	solve();
	return 0;
}

虽然是紫题,但是理解了套路就很水

Classy Numbers

大意:

给出两个数a,b,求出[a,b]中各位数字中非0数不大于3的数字个数。

a,b<=1e18

思路:
板子题

这里显然需要考虑前导0

code

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define endl '\n'
const ll N=1e5+10;
ll b,l,r;
int a[20];
ll cnt=0;
ll dp[20][200];
ll dfs(ll x,int sum,ll op)
{
	if(x==0) return sum<=3;
	if(!op&&dp[x][sum]!=-1) return dp[x][sum];
	int lim=op?a[x]:9;
	ll tot=0;
	for(int i=0;i<=lim;++i)
	{
		tot+=dfs(x-1,sum+(i!=0),op&&i==lim);
	}
	if(!op) dp[x][sum]=tot;
	return tot;
}
ll f(ll x)
{
	cnt=0;
	while(x)
	{
		a[++cnt]=x%10;
		x/=10;
	}
	return dfs(cnt,0,1);
}
void solve()
{
	cin>>l>>r;
	cout<<f(r)-f(l-1)<<endl;
}
int main()
{
	ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
	memset(dp,-1,sizeof dp);
	ll t;cin>>t;while(t--)
	solve();
	return 0;
}

Segment Sum

大意:

给定K,L,R,求L~R之间最多不包含超过K种数码的数的和。

K<=10,L,R<=1e18

思路:
如果只是求满足条件的数字的个数的话就是上面提到的板子题了

这里要求和,我们同样可以考虑对相同状态进行合并求和

f[i][j]表示当前枚举到第i位,出现过的数码种类的状态为j,也就是我们要求的答案数组

g[i][j]表示当前枚举到第i位,出出现过的数码种类的状态为j的合法数字个数,也就是板子

考虑如何用g来推f

这里j可以10位二进制状压

我们每往下走一位,如果我们枚举第i位上填的数字是t,用j'表示下一位的数码种类数

g[i][j]=\sum g[i-1][j']

f[i][j]=\sum 10^i*t*g[i-1][j']+f[i-1][j']

稍微意会一下应该就能懂了

f是数字的和,g是合法数字的个数

有了这个之后,我们就直接推就可以了。然后因为需要下一个状态的f和g,所以我们dfs要返回两个值

code

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define pii pair<ll,ll>
#define mk make_pair
#define endl '\n'
const ll N=1e5+10;
const ll mod=998244353;
ll n,m,k;
ll a[20];
ll cnt=0;
pii dp[40][1030];
ll p[40];
void init()
{
	p[0]=1;
	for(int i=1;i<=20;++i) p[i]=p[i-1]*10ll%mod;
}
bool check(ll x)
{
	ll cn=0;
	while(x)
	{
		cn+=(x%2);
		x/=2;
	}
	return cn<=k;
}
pii dfs(ll x,ll sum,ll head,ll op)
{
	if(x==0) return mk(0,1);
	if(!op&&!head&&dp[x][sum]!=mk(-1ll,-1ll)) return dp[x][sum];
	ll lim=op?a[x]:9;
	ll s1=0,s2=0;
	for(ll i=0;i<=lim;++i)
	{
		//f是数字的和,g是合法数字的个数
		pii gt=mk(0,0);
		if(head&&i==0) gt=dfs(x-1,0,1,op&&i==lim);
		else if(check(sum|(1<<i))) gt=dfs(x-1,sum|(1<<i),0,op&&i==lim);
		s1=(((s1+i*p[x-1]%mod*gt.second%mod)%mod)+gt.first)%mod;	
		s2=(s2+gt.second)%mod;
	} 
	if(!op&&!head) dp[x][sum]=mk(s1,s2);
	return mk(s1,s2);
}
ll f(ll x)
{
	cnt=0;
	while(x)
	{
		a[++cnt]=x%10;
		x/=10;
	}
	return dfs(cnt,0,1,1).first;
}
void solve()
{
	init();
	for(int i=0;i<=20;++i)
	{
		for(int j=0;j<=1025;++j)
		{
			dp[i][j]=mk(-1ll,-1ll);
		}
	}
	cin>>n>>m>>k;
	cout<<((f(m)-f(n-1))%mod+mod)%mod<<endl;
}
int main()
{
	ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
	solve();
	return 0;
}

 E. Salazar Slytherin's Locket

大意:
求l...r之间转成b进制后,每一位都是偶数的数的个数

思路:
不再是10进制,只要在预处理每一位的时候换个底数就好了

注意一下前导0

code

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define endl '\n'
const ll N=1e5+10;
ll b,l,r;
int a[70];
ll cnt=0;
ll dp[70][1026][12];
ll dfs(ll x,int sta,ll op,ll head)
{
	if(x==0) return sta==0;
	if(!op&&!head&&dp[x][sta][b]!=-1) return dp[x][sta][b];
	int lim=op?a[x]:b-1;
	ll tot=0;
	for(int i=0;i<=lim;++i)
	{
		if(head&&i==0) tot+=dfs(x-1,0,op&&i==lim,1);
		else tot+=dfs(x-1,sta^(1<<i),op&&i==lim,0);
	}
	if(!op&&!head) dp[x][sta][b]=tot;
	return tot;
}
ll f(ll x)
{
	cnt=0;
	while(x)
	{
		a[++cnt]=x%b;
		x/=b;
	}
	return dfs(cnt,0,1,1);
}
void solve()
{
	//now++;
	cin>>b>>l>>r;
	cout<<f(r)-f(l-1)<<endl;
}
int main()
{
	ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
	memset(dp,-1,sizeof dp);
	ll t;cin>>t;while(t--)
	solve();
	return 0;
}

花神的数论题

大意:
sum(i)表示i的二进制表示中1的个数,求\prod_{i=1}^{n} sum(i)

思路:
考虑枚举贡献,枚举二进制1的个数为j,假设有k个这样的数字,答案就是\prod j^{k}

code

#include<bits/stdc++.h>
using namespace std;
#define ll long long
const ll mod=1e7+7;
const ll N=70;
ll cnt[N];
ll n;
ll p,ans=1;
ll dp[N][N];//dp[i][j],当前枚举到第i位,前面的数中
//有j个1的情况下最终满足sum值等于p的数字的个数 
ll ksm(ll x,ll y)
{
	ll ans=1;
	while(y)
	{
		if(y&1) ans=ans*x%mod;
		x=x*x%mod;
		y>>=1;
	}
	return ans;
}

ll dfs(ll pos,bool limit,ll sum)
{
	if(pos==0) return (sum==p);//边界条件
	if(!limit&&~dp[pos][sum]) return dp[pos][sum];
	ll up=limit?cnt[pos]:1;
	ll cn=0;
	for(int i=0;i<=up;++i)
	{ 
		if(sum+(i==1)>p) continue;
		cn+=dfs(pos-1,limit&&(i==up),sum+(i==1));
	} 
	if(!limit) dp[pos][sum]=cn;
	return cn;
	 
}
void solve()
{
	ll d=0;
	while(n)
	{
		cnt[++d]=n%2;
		n/=2;
	}
	for(int i=1;i<=d;++i)
	{
		memset(dp,-1,sizeof dp);
		p=i;
		ans=ans*ksm(i,dfs(d,1,0))%mod;
	}
	cout<<ans<<endl;
}
int main()
{
	cin>>n;
	solve();
	return 0;
}

萌数

[HAOI2010]计数

[SCOI2014]方伯伯的商场之旅 题解

Magic Numbers

大意:

思路:

这题其实就跟上面的没有什么区别,只要按要求做就好了。前两个限制都很好处理,对于最后一个,我们只要在dp状态里加上一个前缀模m的值即可

code

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define endl '\n'
const ll N=1e5+10;
const ll mod=1000000007;
ll m,d;
string l,r;
ll a[2010];
ll cnt=0;
ll dp[2010][2005];
ll dfs(ll x,ll mo,ll op)
{
	if(x==0) return mo==0;
	if(!op&&dp[x][mo]!=-1) return dp[x][mo];
	ll tot=0;
	ll lim=op?a[x]:9;
	ll det=cnt-x+1;
	if(det%2==0)
	{
		if(d>lim) return 0;
		tot=(tot+dfs(x-1,(mo*10%m+d)%m,op&&d==lim))%mod;
	}
	else
	{
		for(int i=0;i<=lim;++i)
		{
			if(i==d) continue;
			tot=(tot+dfs(x-1,(mo*10%m+i)%m,op&&i==lim))%mod;
		}
	}
	if(!op) dp[x][mo]=tot;
	return tot;
}
ll f(string s,ll fl)
{
	memset(dp,-1,sizeof dp);
	cnt=0;
	ll len=s.size();
	for(int i=len-1;i>=0;--i)
	{
		a[++cnt]=s[i]-'0';
	}
//	for(int i=1;i<=cnt;++i) cout<<a[i];
//		cout<<endl;
	if(fl)
	{
		a[1]--;
		for(int i=1;i<=cnt;++i)
		{
			if(a[i]==-1)
			{
				a[i]=9;
				a[i+1]--;
			}
		}
//		for(int i=1;i<=cnt;++i) cout<<a[i];
//		cout<<endl;
	}
	return dfs(cnt,0,1);
}
void solve()
{
	cin>>m>>d>>l>>r;
	cout<<((f(r,0)-f(l,1))%mod+mod)%mod<<endl;
}
int main()
{
	ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
//	ll t;cin>>t;while(t--)
	solve();
	return 0;
}

 Beautiful numbers

大意:

思路:

 我们很难在枚举的过程中将dp状态设置为与x模2-9的值都有关,因为这样不好合并相同状态。

这里有两个小结论

1.两个整数a,b满足a|x,b|x的充要条件是lcm(a,b)|x

Proof:

->:

由a|x,b|x知,x=m*a=n*b

则我们有a|(n*b)

若(a,b)=1,则由上述结论我们有a|n,故x=n*b=(k*a)*b=k*lcm(a,b),即lcm(a,b)|x     ----------1

若(a,b)=d,则d*(a/d)=n*d*(b/d),即(a/d)=n*(b/d),其中(a/d,b/d)=1,转为推导1

故该方向得证

<-:

显然

则命题得证

推广一下就是:若干个数ai都整除x的充要条件是lcm{ai}|x

2.考虑n个数a1,a2...an,记其LCM为L,则x%ai=(x%L)%ai

证明显然 

有了上述性质,我们不难发现,可以用x%2520(1-9的最小公倍数)来代替x的值,那么首先值域就已经大大简化了。然后由性质1,我们只需要维护出现过数字的lcm即可,最后的判断条件就是前缀%2520的值%lcm=0

那么我们记录dpi,j,k表示前i位,前缀模2520的值为j,前i位中非0位的lcm为k,就可以dp了。但是空间有点大,考虑优化。

不难发现,第三维其实并没有很多数字,2-9中任意若干个数字的lcm一定是2520的因数,而2520的因数总共只有48个,就大大简化了空间,并且我们可以预处理

这样就ok了

code

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define endl '\n'
const ll N=1e5+10;
const ll mod=2520;
ll n,m;
ll a[22];
ll cnt=0;
int mp[2522];
ll dp[22][2522][52];
int Gt[2522][2522];
ll cm(ll x,ll y)
{
	if(x==0||y==0) return x|y;
	ll Gcd=__gcd(x,y);
	if(x>=y) swap(x,y);
	if(Gt[x][y]) return Gt[x][y]; 
	return Gt[x][y]=x*y/Gcd;
}
ll dfs(ll x,ll op,ll mo,ll Lcm)
{
	if(x==0) return mo%Lcm==0;
	if(!op&&dp[x][mo][mp[Lcm]]!=-1) return dp[x][mo][mp[Lcm]];
	ll tot=0;
	ll lim=op?a[x]:9;
	for(int i=0;i<=lim;++i)
	{
		if(i==0) tot+=dfs(x-1,op&&i==lim,mo*10%mod,Lcm);
		else tot+=dfs(x-1,op&&i==lim,(mo*10%mod+i)%mod,cm(Lcm,i));
	}
	if(!op) dp[x][mo][mp[Lcm]]=tot;
	return tot;
	
}
void init()
{
	ll cn=0;
	for(int i=1;i<=2520;++i)
	{
		if(2520%i) continue;
		mp[i]=++cn;
	}
//	cout<<cn<<endl;
}
ll f(ll x)
{
	cnt=0;
	while(x)
	{
		a[++cnt]=x%10;
		x/=10;
	}
	return dfs(cnt,1,0,1);
}
void solve()
{
	
	cin>>n>>m;
	cout<<f(m)-f(n-1)<<endl;	
}
int main()
{
	ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
	memset(dp,-1,sizeof dp);
	init();
	ll t;cin>>t;while(t--)
	solve();
	return 0;
}

最后再提一嘴,有些时候会遇到题目说每一个数字是按位排序过的,也就是同一个数字内数位升序排列,然后要求处理相关问题。比如CF908G New Year and Original Order[SDOI2010]代码拍卖会,这种题有一个不常见但是很关键的套路,就是将每一个数字拆分成若干个由1组成的数字的和,这个性质是由其数位升序带来的,做题的时候要留一个心眼。但是本人太菜,这两题还不会...留个坑。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值