AcWing 1210. 连号区间数 解题思路及代码

文章讲述了作者解决连号区间数问题的过程,最初采用暴力枚举和排序的方法导致超时,随后通过观察发现可以优化为线性时间复杂度,仅通过维护最大值和最小值来找出符合题意的区间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先贴个题目:

 以及原题链接:1210. 连号区间数 - AcWing题库icon-default.png?t=N7T8https://www.acwing.com/problem/content/description/1212/

 这题我的第一反应是先枚举起始点和最终点,然后排序,然后因为一个差为1的数列必然有的性质就是ai-aj=i-j,因此暴力枚举然后排序判断,就能得到最终答案。代码如下:

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;

const int N = 10010;
int list[N], tmp[N];

int main()
{
    int n, sum = 0;
    cin >> n;
    sum += n;
    for (int i = 1; i < n + 1; ++i)
        cin >> list[i];
    for (int i = 1; i < n; ++i)
        for (int j = i + 1; j < n + 1; ++j)
        {
            int len = j - i + 1;
            memcpy(tmp + 1, list + i, sizeof(int) * len);
            sort(tmp + 1, tmp + len + 1);
            if (tmp[len] - tmp[1] == len - 1)
            {
                sum++;
            }
        }
    cout << sum;
    return 0;
}

然后样例过了,然后提交,tle了,T-T。分析下时间复杂度,外面两层循环O(n方),里面sort(nlogn)肯定是超了,那咋办呢?因为题目中的N=1e4,所以我们要把算法优化到O(n方)然后我们就可以从sort做文章,我们不是排序吗?排序的意义是什么?找到片段的最小数和最大数不就完了,那我们直接优化,找两个变量max,min,每次找定起点后,每次终点往后一个数,就把那个数拿进来判断和最大最小两个数之间的关系,从而保证区间内局部最大最小数正确,然后判断是不是相符,问题就解决了,优化过后的代码如下:

#include <iostream>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;

const int N = 10010;
int list[N], tmp[N];

int main()
{
    int n, sum = 0;
    cin >> n;
    sum += n;
    for (int i = 1; i < n + 1; ++i)
        cin >> list[i];
    int Max, Min;
    for (int i = 1; i < n; ++i)
    {
        Max = list[i];
        Min = list[i];
        for (int j = i + 1; j < n + 1; ++j)
        {
            Max = max(Max, list[j]);
            Min = min(Min, list[j]);
            if (Max - Min == j - i)
                sum++;
        }
    }

    cout << sum;
    return 0;
}

至于代码部分,没啥好说的。

by————2024.2.27刷题记录

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值