HDU - 1233 还是畅通工程

HDU - 1233 还是畅通工程 

某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。

Input
测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。
当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最小的公路总长度。
Sample Input
3
1 2 1
1 3 2
2 3 4
4
1 2 1
1 3 4
1 4 1
2 3 3
2 4 2
3 4 5
0
Sample Output
3
5

题意:还是传统的畅通工程题目。

题解:以为是正常的解法,没想到数据并不是100...需要用kruskal算法处理1000000的数据,直接kruskal就AC了。

AC代码:

#include<cstdio>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn = 100007;
int sum;
struct node
{
    int r,l,cost;
}E[maxn];
bool cmp(node a,node b)
{
    return a.cost<b.cost;
}
int n,m;
int fa[maxn];
int fi(int x)
{
    return fa[x]==x?x:fa[x]=fi(fa[x]);
}
void unionset(int x,int y)
{
    int p1=fi(x);
    int p2 = fi(y);
    if(p1==p2)return ;
    fa[p1]=p2;
}
void kruskal()
{
    sort(E+1,E+1+m,cmp);
    for(int i=1;i<=m;i++)
    {
        if(fi(E[i].r)!=fi(E[i].l))sum+=E[i].cost;
        unionset(E[i].l,E[i].r);
    }

}
int main()
{
    while(cin>>n)
    {
        if(!n)break;
        sum=0;
        m=n*(n-1)/2;
        for(int i=1;i<=m;i++)
        {
            fa[i]=i;
        }
        for(int i=1;i<=m;i++)
        {
            cin>>E[i].l>>E[i].r>>E[i].cost;
        }
        kruskal();
        cout<<sum<<endl;
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值