HDU - 1233 还是畅通工程
某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。
Input测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。
当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最小的公路总长度。
Sample Input
3
1 2 1
1 3 2
2 3 4
4
1 2 1
1 3 4
1 4 1
2 3 3
2 4 2
3 4 5
0
Sample Output
3
5
题意:还是传统的畅通工程题目。
题解:以为是正常的解法,没想到数据并不是100...需要用kruskal算法处理1000000的数据,直接kruskal就AC了。
AC代码:
#include<cstdio>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn = 100007;
int sum;
struct node
{
int r,l,cost;
}E[maxn];
bool cmp(node a,node b)
{
return a.cost<b.cost;
}
int n,m;
int fa[maxn];
int fi(int x)
{
return fa[x]==x?x:fa[x]=fi(fa[x]);
}
void unionset(int x,int y)
{
int p1=fi(x);
int p2 = fi(y);
if(p1==p2)return ;
fa[p1]=p2;
}
void kruskal()
{
sort(E+1,E+1+m,cmp);
for(int i=1;i<=m;i++)
{
if(fi(E[i].r)!=fi(E[i].l))sum+=E[i].cost;
unionset(E[i].l,E[i].r);
}
}
int main()
{
while(cin>>n)
{
if(!n)break;
sum=0;
m=n*(n-1)/2;
for(int i=1;i<=m;i++)
{
fa[i]=i;
}
for(int i=1;i<=m;i++)
{
cin>>E[i].l>>E[i].r>>E[i].cost;
}
kruskal();
cout<<sum<<endl;
}
return 0;
}