题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1091
题目
X轴上有N条线段,每条线段包括1个起点和终点。线段的重叠是这样来算的,[10 20]和[12 25]的重叠部分为[12 20]。
给出N条线段的起点和终点,从中选出2条线段,这两条线段的重叠部分是最长的。输出这个最长的距离。如果没有重叠,输出0。
Input
第1行:线段的数量N(2 <= N <= 50000)。
第2 - N + 1行:每行2个数,线段的起点和终点。(0 <= s , e <= 10^9)
Output
输出最长重复区间的长度。
Input示例
5
1 5
2 4
2 8
3 7
7 9
Output示例
4
题解:两条线段的关系有覆盖,相交和不相交三种。覆盖的距离为短线段的长度,不相交为0,相交为较小的左右端的差。所以将线段按左端点从小到大,右端点从大到小排序。记录当前线段为第一条,如果是覆盖直接计算,相交的情况可以将计算后将当前线段变为第二条线段,因为相交的话后面的线段与第二条线段的重叠长度一定大于与第一条的重叠长度。这样计算下去求最长距离即可。复杂度O(n),O(n^2)会TLE。
AC代码:
#include<iostream>
#include<algorithm>
#include<cstdio>
using namespace std;
const int maxn = 50005;
struct node
{
int r,l;
}a[maxn];
bool cmd (node x,node y)
{
if(x.l==y.l)return x.r>y.r;
else return x.l<y.l;
}
int n;
int main()
{
cin>>n;
for(int i=1;i<=n;i++)
{
scanf("%d%d",&a[i].l,&a[i].r);
}
sort(a+1,a+1+n,cmd);
int m = a[1].r;
int ans = 0;
for(int i=2;i<=n;i++)
{
if(m>a[i].r)
{
ans = max(ans,a[i].r-a[i].l);
}
else
{
ans = max(ans,m-a[i].l);
m=a[i].r;
}
}
cout<<ans<<endl;
return 0;
}